Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 18: 1375531, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835441

RESUMO

It is important to describe effective and non-toxic therapies for multiple sclerosis (MS), an autoimmune demyelinating disease. Experimental autoimmune encephalomyelitis (EAE) is an immune-mediated inflammatory disease that serves as a model for MS. Earlier we and others have shown that, gemfibrozil, a lipid-lowering drug, exhibits therapeutic efficacy in EAE. However, the underlying mechanism was poorly understood. Although gemfibrozil is a known ligand of peroxisome proliferator-activated receptor α (PPARα), here, we established that oral administration of gemfibrozil preserved the integrity of blood-brain barrier (BBB) and blood-spinal cord barrier (BSB), decreased the infiltration of mononuclear cells into the CNS and inhibited the disease process of EAE in both wild type and PPARα-/- mice. On the other hand, oral gemfibrozil was found ineffective in maintaining the integrity of BBB/BSB, suppressing inflammatory infiltration and reducing the disease process of EAE in mice lacking PPARß (formerly PPARδ), indicating an important role of PPARß/δ, but not PPARα, in gemfibrozil-mediated preservation of BBB/BSB and protection of EAE. Regulatory T cells (Tregs) play a critical role in the disease process of EAE/MS and we also demonstrated that oral gemfibrozil protected Tregs in WT and PPARα-/- EAE mice, but not PPARß-/- EAE mice. Taken together, our findings suggest that gemfibrozil, a known ligand of PPARα, preserves the integrity of BBB/BSB, enriches Tregs, and inhibits the disease process of EAE via PPARß, but not PPARα.

2.
J Alzheimers Dis Rep ; 8(1): 903-922, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38910936

RESUMO

Background: Despite intense investigations, no effective treatment is yet available to reduce plaques and protect memory and learning in patients with Alzheimer's disease (AD), the most common neurodegenerative disorder. Therefore, it is important to identify a non-toxic, but effective, treatment option for AD. Objective: Cinnamein, a nontoxic compound, is naturally available in Balsam of Peru and Tolu Balsam. We examined whether cinnamein treatment could decrease plaques and improve cognitive functions in 5XFAD mouse model of AD. Methods: We employed in silico analysis, time-resolved fluorescence energy transfer assay, thermal shift assay, primary neuron isolation, western blot, immunostaining, immunohistochemistry, Barnes maze, T maze, and open field behavior. Results: Oral administration of cinnamein led to significant reduction in amyloid-ß plaque deposits in the brain and protection of spatial learning and memory in 5XFAD mice. Peroxisome proliferator-activated receptor alpha (PPARα), a nuclear hormone receptor, is involved in plaque lowering and increase in hippocampal plasticity. While investigating underlying mechanisms, we found that cinnamein served as a ligand of PPARα. Accordingly, oral cinnamein upregulated the level of PPARα, but not PPARß, in the hippocampus, and remained unable to decrease plaques from the hippocampus and improve memory and learning in 5XFAD mice lacking PPARα. While A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) is one of the drivers of nonamyloidogenic pathway, transcription factor EB (TFEB) is considered as the master regulator of autophagy. Cinnamein treatment was found to upregulate both ADAM10 and TFEB in the brain of 5XFAD mice via PPARα. Conclusions: Our results suggest that this balsam component may have therapeutic importance in AD.

5.
NeuroImmune Pharm Ther ; 3(1): 47-59, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38532785

RESUMO

Huntington Disease (HD), a devastating hereditary neurodegenerative disorder, is caused by expanded CAG trinucleotide repeats in the huntingtin gene (Htt) on chromosome 4. Currently, there is no effective therapy for HD. Although aspirin, acetylsalicylic acid, is one of the most widely-used analgesics throughout the world, it has some side effects. Even at low doses, oral aspirin can cause gastrointestinal symptoms, such as heartburn, upset stomach, or pain. Therefore, to bypass the direct exposure of aspirin to stomach, here, we described a new mode of use of aspirin and demonstrated that nebulization of low-dose of aspirin (10 µg/mouse/d=0.4 mg/kg body wt/d roughly equivalent to 28 mg/adult human/d) alleviated HD pathology in N171-82Q transgenic mice. Our immunohistochemical and western blot studies showed that daily aspirin nebulization significantly reduced glial activation, inflammation and huntingtin pathology in striatum and cortex of N171-82Q mice. Aspirin nebulization also protected transgenic mice from brain volume shrinkage and improved general motor behaviors. Collectively, these results highlight that nebulization of low-dose aspirin may have therapeutic potential in the treatment of HD.

6.
Int J Pharm ; 652: 123793, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38195033

RESUMO

Pharmaceutical cocrystallization has been widely used to improve physicochemical properties of APIs. However, developing cocrystal formulation with proven clinical success remains scarce. Successful translation of a cocrystal to suitable dosage forms requires simultaneously improvement of several deficient physicochemical properties over the parent API, without deteriorating other properties critical for successful product development. In the present work, we report the successful development of a direct compression tablet product of acetazolamide (ACZ), using a 1:1 cocrystal of acetazolamide with p-aminobenzoic acid (ACZ-PABA). The ACZ-PABA tablet exhibits superior biopharmaceutical performance against the commercial tablet, DIAMOX® (250 mg), in healthy human volunteers, leading to more than 50 % reduction in the required dose.


Assuntos
Ácido 4-Aminobenzoico , Acetazolamida , Humanos , Acetazolamida/química , Ácido 4-Aminobenzoico/química , Cristalização , Disponibilidade Biológica , Voluntários Saudáveis , Solubilidade , Comprimidos/química
7.
Int J Pharm ; 650: 123666, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38065346

RESUMO

Emerging evidence suggests that intestinal permeability can be potentially enhanced through cocrystallization. However, a mechanism for this effect remains to be established. In this study, we first demonstrate the enhancement in intestinal permeability, evaluated by the Caco-2 cell permeability assay, of acetazolamide (ACZ) in the presence of a conformer, p-aminobenzoic acid (PABA), delivered in the form of a 1:1 cocrystal. The binding strength of ACZ and PABA with the Pgp efflux transporter, either alone or as a mixture, was calculated using molecular dynamics simulation. Results show that PABA weakens the binding of ACZ with Pgp, which leads to a lower efflux ratio and elevated permeability of ACZ. This work provides molecular-level insights into a potentially effective strategy to improve the intestinal permeability of drugs. If the same cocrystal also exhibits higher solubility, oral bioavailability of BCS IV drugs can likely be improved by forming a cocrystal with a Pgp inhibitor.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Simulação de Dinâmica Molecular , Humanos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Células CACO-2 , Ácido 4-Aminobenzoico , Permeabilidade , Absorção Intestinal
8.
Cytokine ; 174: 156457, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38056248

RESUMO

The level of IL-2 increases markedly in serum and central nervous system (CNS) of patients with multiple sclerosis (MS) and animals with experimental allergic encephalomyelitis (EAE). However, mechanisms by which IL-2 is induced under autoimmune demyelinating conditions are poorly understood. The present study underlines the importance of IL-12p40 homodimer (p402), the so-called biologically inactive molecule, in inducing the expression of IL-2 in mouse BV-2 microglial cells, primary mouse and human microglia, mouse peritoneal macrophages, RAW264.7 macrophages, and T cells. Interestingly, we found that p402 and IL-12p70 (IL-12), but not IL-23, dose-dependently induced the production of IL-2 and the expression of IL-2 mRNA in microglial cells. Similarly, p402 also induced the activation of IL-2 promoter in microglial cells and RAW264.7 cells. Among various stimuli tested, p402 was the most potent stimulus followed by IFN-γ, bacterial lipopolysaccharide, HIV-1 gp120, and IL-12 in inducing the activation of IL-2 promoter in microglial cells. Moreover, p402, but not IL-23, increased NFATc2 mRNA expression and the transcriptional activity of NFAT. Furthermore, induction of IL-2 mRNA expression by over-expression of p40, but not by p19, cDNA indicated that p40, but not p19, is responsible for the induction of IL-2 mRNA in microglia. Finally, by using primary microglia from IL to 12 receptor ß1 deficient (IL-12Rß1-/-) and IL-12 receptor ß2 deficient (IL-12Rß2-/-) mice, we demonstrate that p402 induces the expression of IL-2 via IL-12Rß1, but not IL-12Rß2. In experimental autoimmune encephalomyelitis, an animal model of MS, neutralization of p402 by mAb a3-1d led to decrease in clinical symptoms and reduction in IL-2 in T cells and microglia. These results delineate a new biological function of p402, which is missing in the so-called autoimmune cytokine IL-23, and raise the possibility of controlling increased IL-2 and the disease process of MS via neutralization of p402.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Humanos , Animais , Camundongos , Interleucina-12/metabolismo , Microglia/metabolismo , Interleucina-2/metabolismo , Macrófagos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Interleucina-23
9.
Cancers (Basel) ; 15(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38136341

RESUMO

Pancreatic cancer is a highly aggressive cancer with a high mortality rate and limited treatment options. It is the fourth leading cause of cancer in the US, and mortality is rising rapidly, with a 12% relative 5-year survival rate. Early diagnosis remains a challenge due to vague symptoms, lack of specific biomarkers, and rapid tumor progression. Interleukin-12 (IL-12) is a central cytokine that regulates innate (natural killer cells) and adaptive (cytokine T-lymphocytes) immunity in cancer. We demonstrated that serum levels of IL-12p40 homodimer (p402) and p40 monomer (p40) were elevated and that of IL-12 and IL-23 were lowered in pancreatic cancer patients compared to healthy controls. Comparably, human PDAC cells produced greater levels of p402 and p40 and lower levels of IL-12 and IL-23 compared to normal pancreatic cells. Notably, neutralization of p402 by mAb a3-1d and p40 by mAb a3-3a induced the death of human PDAC cells, but not normal human pancreatic cells. Furthermore, we demonstrated that treatment of PDX mice with p402 mAb and p40 mAb resulted in apoptosis and tumor shrinkage. This study illustrates a new role of p402 and p40 monomer in pancreatic cancer, highlighting possible approaches against this deadly form of cancer with p402 and p40 monomer immunotherapies.

10.
J Immunol ; 211(2): 187-198, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37314416

RESUMO

Although several immunomodulatory drugs are available for multiple sclerosis (MS), most present significant side effects with long-term use. Therefore, delineation of nontoxic drugs for MS is an important area of research. ß-Hydroxy ß-methylbutyrate (HMB) is accessible in local GNC stores as a muscle-building supplement in humans. This study underlines the importance of HMB in suppressing clinical symptoms of experimental autoimmune encephalomyelitis (EAE) in mice, an animal model of MS. Dose-dependent study shows that oral HMB at a dose of 1 mg/kg body weight/d or higher significantly suppresses clinical symptoms of EAE in mice. Accordingly, orally administered HMB attenuated perivascular cuffing, preserved the integrity of the blood-brain barrier and blood-spinal cord barrier, inhibited inflammation, maintained the expression of myelin genes, and blocked demyelination in the spinal cord of EAE mice. From the immunomodulatory side, HMB protected regulatory T cells and suppressed Th1 and Th17 biasness. Using peroxisome proliferator-activated receptor (PPAR)α-/- and PPARß-/- mice, we observed that HMB required PPARß, but not PPARα, to exhibit immunomodulation and suppress EAE. Interestingly, HMB reduced the production of NO via PPARß to protect regulatory T cells. These results describe a novel anti-autoimmune property of HMB that may be beneficial in the treatment of MS and other autoimmune disorders.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , PPAR beta , Humanos , Camundongos , Animais , PPAR beta/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Valeratos/uso terapêutico , Camundongos Endogâmicos C57BL
11.
Chem Biol Drug Des ; 101(3): 690-695, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36322010

RESUMO

Malaria continues to be a significant public health problem threatened by the emergence and spread of resistance to artemisinin-based combination therapies and marked half a million deaths in 2016. A new imidazopyridine chemotype has been envisaged through scaffold-hopping approach combined with docking studies for putative-binding interactions with Plasmodium falciparum phosphatidylinositol-4-kinase (PfPI4K) target. The docking results steered to the synthesis of compound 1 [5-(3-(methylsulfonyl)phenyl)-3-(4-(methylsulfonyl)phenyl)-3H-imidazo[4,5-b]pyridine] followed by the in vitro screening for antiplasmodial activity and ADME-PK studies. Combined with potent antimalarial activity of compound 1 (Pf3D7 IC50  = 29 nM) with meager in vitro intrinsic clearance, moderate plasma-protein binding, and acceptable permeability, compound 1 displayed sustained exposure and high oral bioavailability in mice and can thus have the potential as next generation PI4K inhibitor for in vivo studies.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Malária , Camundongos , Animais , Antimaláricos/farmacologia , Antimaláricos/química , Malária/tratamento farmacológico , Plasmodium falciparum , Piridinas/química
12.
NeuroImmune Pharm Ther ; 1(1): 7-22, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36720111

RESUMO

Parkinson's disease (PD) is the second most prevalent neurodegenerative disease and this study underlines the significance of a small molecule glyceryl tribenzoate (GTB), a FDA approved food additive, in preventing parkinsonian pathologies in MPTP-induced animal models. The study conducted in MPTP-induced mice demonstrated dose-dependent protection of nigral tyrosine hydroxylase (TH) and striatal dopamine level by GTB oral treatment and the optimum dose was found to be 50 mg/kg/d. In the next phase, the study was carried out in MPTP-injected hemiparkinsonian monkeys, which recapitulate better clinical parkinsonian syndromes. GTB inhibited MPTP-driven induction of glial inflammation, which was evidenced by reduced level of GTP-p21Ras and phospho-p65 in SN of monkeys. It led to decreased expression of inflammatory markers such as IL-1ß and iNOS. Simultaneously, GTB oral treatment protected nigral TH cells, striatal dopamine, and improved motor behaviour of hemiparkinsonian monkeys. Presence of sodium benzoate, a GTB metabolite and a FDA-approved drug for urea cycle disorders and glycine encephalopathy, in the brain suggests that the neuroprotective effect imparted by GTB might be mediated by sodium benzoate. Although the mechanism of action of GTB is poorly understood, the study sheds light on the therapeutic possibility of a food additive GTB in PD.

13.
Nat Commun ; 12(1): 5382, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508096

RESUMO

Pathways to control the spreading of α-synuclein (α-syn) and associated neuropathology in Parkinson's disease (PD), multiple system atrophy (MSA) and dementia with Lewy bodies (DLB) are unclear. Here, we show that preformed α-syn fibrils (PFF) increase the association between TLR2 and MyD88, resulting in microglial activation. The TLR2-interaction domain of MyD88 (wtTIDM) peptide-mediated selective inhibition of TLR2 reduces PFF-induced microglial inflammation in vitro. In PFF-seeded A53T mice, the nasal administration of the wtTIDM peptide, NEMO-binding domain (wtNBD) peptide, or genetic deletion of TLR2 reduces glial inflammation, decreases α-syn spreading, and protects dopaminergic neurons by inhibiting NF-κB. In summary, α-syn spreading depends on the TLR2/MyD88/NF-κB pathway and it can be reduced by nasal delivery of wtTIDM and wtNBD peptides.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Microglia/patologia , alfa-Sinucleína/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Neurônios Dopaminérgicos/imunologia , Humanos , Doença por Corpos de Lewy/genética , Doença por Corpos de Lewy/patologia , Camundongos , Camundongos Knockout , Microglia/imunologia , Microglia/metabolismo , Atrofia de Múltiplos Sistemas/genética , Atrofia de Múltiplos Sistemas/patologia , Mutagênese Sítio-Dirigida , Mutação , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Cultura Primária de Células , Regiões Promotoras Genéticas , Transdução de Sinais/imunologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , alfa-Sinucleína/genética
14.
Eur J Med Chem ; 223: 113630, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34175538

RESUMO

In search of dually active PPAR-modulators/aldose reductase (ALR2) inhibitors, 16 benzylidene thiazolidinedione derivatives, previously reported as partial PPARγ agonists, together with additional 18 structural congeners, were studied for aldose reductase inhibitory activity. While no compounds had dual property, our efforts led to the identification of promising inhibitors of ALR2. Eight compounds (11, 15-16, 20-24, 30) from the library of 33 compounds were identified as potent and selective inhibitors of ALR2. Compound 21 was the most effective and selective inhibitor with an IC50 value of 0.95 ± 0.11 and 13.52 ± 0.81 µM against ALR2 and aldehyde reductase (ALR1) enzymes, respectively. Molecular docking and dynamics studies were performed to understand inhibitor-enzyme interactions at the molecular level that determine the potency and selectivity. Compound 21 was further subjected to in silico and in vitro studies to evaluate the pharmacokinetic profile. Being less acidic (pKa = 9.8), the compound might have a superior plasma membrane permeability and reach the cytosolic ALR2. This fact together with excellent drug-likeness criteria points to improved bioavailability compared to the clinically used compound Epalrestat. The designed compounds represent a novel group of non-carboxylate inhibitors of aldose reductase with an improved physicochemical profile.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Tiazolidinedionas/farmacologia , Aldeído Redutase/química , Aldeído Redutase/metabolismo , Animais , Células CACO-2 , Domínio Catalítico , Cães , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacocinética , Humanos , Hipoglicemiantes/síntese química , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/farmacologia , Células Madin Darby de Rim Canino , Masculino , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Ratos Wistar , Relação Estrutura-Atividade , Tiazolidinedionas/síntese química , Tiazolidinedionas/metabolismo , Tiazolidinedionas/farmacocinética
15.
ChemMedChem ; 16(3): 484-498, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33030290

RESUMO

Insulin resistance is a major pathophysiological feature in the development of type 2 diabetes (T2DM). Ferulic acid is known for attenuating the insulin resistance and reducing the blood glucose in T2DM rats. In this work, we designed and synthesized a library of new ferulic acid amides (FAA), which could be considered as ring opening derivatives of the antidiabetic PPARγ agonists Thiazolidinediones (TZDs). However, since these compounds displayed weak PPAR transactivation capacity, we employed a proteomics approach to unravel their molecular target(s) and identified the peroxiredoxin 1 (PRDX1) as a direct binding target of FAAs. Interestingly, PRDX1, a protein with antioxidant and chaperone activity, has been implied in the development of T2DM by inducing hepatic insulin resistance. SPR, mass spectrometry-based studies, docking experiments and in vitro inhibition assay confirmed that compounds VIe and VIf bound PRDX1 and induced a dose-dependent inhibition. Furthermore, VIe and VIf significantly improved hyperglycemia and hyperlipidemia in streptozotocin-nicotinamide (STZ-NA)-induced diabetic rats as confirmed by histopathological examinations. These results provide guidance for developing the current FAAs as new potential antidiabetic agents.


Assuntos
Amidas/farmacologia , Ácidos Cumáricos/farmacologia , Inibidores Enzimáticos/farmacologia , Hipoglicemiantes/farmacologia , Hipolipemiantes/farmacologia , Peroxirredoxinas/antagonistas & inibidores , Amidas/síntese química , Amidas/química , Animais , Compostos de Bifenilo/antagonistas & inibidores , Sobrevivência Celular/efeitos dos fármacos , Ácidos Cumáricos/síntese química , Ácidos Cumáricos/química , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Hipoglicemia/induzido quimicamente , Hipoglicemia/tratamento farmacológico , Hipoglicemia/metabolismo , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Hipolipemiantes/síntese química , Hipolipemiantes/química , Masculino , Modelos Moleculares , Estrutura Molecular , Peroxirredoxinas/metabolismo , Picratos/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Estreptozocina , Relação Estrutura-Atividade , Células Tumorais Cultivadas
16.
Proc Natl Acad Sci U S A ; 117(35): 21557-21567, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817415

RESUMO

Multiple sclerosis (MS) is the most common human demyelinating disease of the central nervous system. The IL-12 family of cytokines has four members, which are IL-12 (p40:p35), IL-23 (p40:p19), the p40 monomer (p40), and the p40 homodimer (p402). Since all four members contain p40 in different forms, it is important to use a specific monoclonal antibody (mAb) to characterize these molecules. Here, by using such mAbs, we describe selective loss of p40 in serum of MS patients as compared to healthy controls. Similarly, we also observed decrease in p40 and increase in IL-12, IL-23, and p402 in serum of mice with experimental autoimmune encephalomyelitis (EAE), an animal model of MS, as compared to control mice. Interestingly, weekly supplementation of mouse and human recombinant p40 ameliorated clinical symptoms and disease progression of EAE. On the other hand, IL-12, IL-23, and p402 did not exhibit such inhibitory effect. In addition to EAE, p40 also suppressed collagen-induced arthritis in mice. Using IL-12Rß1-/-, IL-12Rß2-/-, and IL-12Rß1+/-/IL-12Rß2-/- mice, we observed that p40 required IL-12Rß1, but not IL-12Rß2, to suppress EAE. Interestingly, p40 arrested IL-12-, IL-23-, or p402-mediated internalization of IL-12Rß1, but neither IL-12Rß2 nor IL-23R, protected regulatory T cells, and suppressed Th1 and Th17 biasness. These studies identify p40 as an anti-autoimmune cytokine with a biological role different from IL-12, IL-23, and p402 in which it attenuates autoimmune signaling via suppression of IL-12Rß1 internalization, which may be beneficial in patients with MS and other autoimmune disorders.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Subunidade p40 da Interleucina-12/imunologia , Subunidade p40 da Interleucina-12/farmacologia , Receptores de Interleucina-12/antagonistas & inibidores , Adulto , Animais , Células Cultivadas , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/tratamento farmacológico , Feminino , Humanos , Interleucina-12/imunologia , Interleucina-12/metabolismo , Interleucina-23/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/sangue , Esclerose Múltipla/imunologia , Ligação Proteica , Receptores de Interleucina-12/imunologia , Proteínas Recombinantes/farmacologia , Transdução de Sinais , Células Th17/efeitos dos fármacos , Células Th17/imunologia
17.
Neurobiol Dis ; 132: 104575, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31445159

RESUMO

Although Parkinson's disease (PD) is a progressive neurodegenerative disease, the disease does not progress or persist in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model, the most common animal model of PD. Recently, we have described that supplementation of regulated on activation, normal T cell expressed and secreted (RANTES), a chemokine known to drive infiltration of T cells, induces persistent nigrostriatal pathology in MPTP mouse model. However, which particular T cell subsets are recruited to the substantia nigra (SN) by RANTES is not known. Here, by adoptive transfer of different subset of T cells from tomato red transgenic mice to MPTP-intoxicated immunodeficient Rag1-/- mice, we describe that invasion of Th17 cells into the SN is stimulated by exogenous RANTES administration. On the other hand, RANTES supplementation remained unable to influence the infiltration of Th1 and Tregs into the SN of MPTP-insulted Rag1-/- mice. Accordingly, RANTES supplementation increased MPTP-induced TH cell loss in Rag1-/-mice receiving Th17, but neither Th1 nor Tregs. RANTES-mediated aggravation of nigral TH neurons also paralleled with significant DA loss in striatum and locomotor deficits in MPTP-intoxicated Rag1-/- mice receiving Th17 cells. Finally, we demonstrate that levels of IL-17 (a Th17-specific cytokine) and RANTES are higher in serum of PD patients than age-matched controls and that RANTES positively correlated with IL-17 in serum of PD patients. Together, these results highlight the importance of RANTES-Th17 pathway in progressive dopaminergic neuronal loss and associated PD pathology.


Assuntos
Quimiocina CCL5/imunologia , Neurônios Dopaminérgicos/patologia , Transtornos Parkinsonianos/imunologia , Substância Negra/imunologia , Células Th17/imunologia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Neural/imunologia , Degeneração Neural/patologia , Doença de Parkinson/imunologia , Doença de Parkinson/patologia , Transtornos Parkinsonianos/patologia , Substância Negra/patologia
18.
J Immunol ; 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043478

RESUMO

Parkinson disease (PD) is the most common neurodegenerative movement disorder in humans. Despite intense investigation, no effective therapy is available to stop the progression of this disease. It is becoming clear that both innate and adaptive immune responses are active in PD. Accordingly, we have reported a marked increase in RANTES and eotaxin, chemokines that are involved in T cell trafficking, in vivo in the substantia nigra (SN) and the serum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-intoxicated hemiparkinsonian monkeys. Because RANTES and eotaxin share a common receptor, CCR5, we examined the efficacy of maraviroc, an inhibitor of CCR5 and a Food and Drug Administration-approved drug against HIV infection, in hemiparkinsonian rhesus monkeys. First, we found glial limitans injury, loss of GFAP immunostaining, and infiltration of T cells across the endothelial monolayer in SN of hemiparkinsonian monkeys. However, oral administration of a low dose of maraviroc protected glia limitans partially, maintained the integrity of endothelial monolayer, reduced the infiltration of T cells, attenuated neuroinflammation, and decreased α-synucleinopathy in the SN. Accordingly, maraviroc treatment also protected both the nigrostriatal axis and neurotransmitters and improved motor functions in hemiparkinsonian monkeys. These results suggest that low-dose maraviroc and other CCR5 antagonists may be helpful for PD patients.

19.
Sci Signal ; 11(558)2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30482850

RESUMO

Multiple sclerosis (MS) is a human disease that results from autoimmune T cells targeting myelin protein that is expressed within the central nervous system. In MS, the number of FoxP3-expressing regulatory T cells (Tregs) is reduced, which facilitates the activation of autoreactive T cells. Because aspirin (acetylsalicylic acid) is the most widely used nonsteroidal anti-inflammatory drug, we examined its immunomodulatory effect in mice with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. We found that low-dose aspirin suppressed the clinical symptoms of EAE in mouse models of both relapsing-remitting and chronic disease. Aspirin reduced the development of EAE driven by myelin basic protein (MBP)-specific T cells and the associated perivascular cuffing, inflammation, and demyelination. The effects of aspirin required the presence of CD25+FoxP3+ Tregs Aspirin increased the amounts of Foxp3 and interleukin-4 (IL-4) in T cells and suppressed the differentiation of naïve T cells into T helper 17 (TH17) and TH1 cells. Aspirin also increased the transcription of Il11 mediated by the transcription factor CREB, which was necessary for the generation of Tregs Neutralization of IL-11 negated the effects of aspirin on Treg development and exacerbated EAE. Furthermore, we found that IL-11 alone was sufficient to maintain the percentage of FoxP3+ Tregs and protect mice from EAE. These results identify a previously uncharacterized mode of action of aspirin.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Aspirina/farmacologia , Encefalomielite Autoimune Experimental/prevenção & controle , Interleucina-11/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Aspirina/administração & dosagem , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Interleucina-11/genética , Camundongos , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/toxicidade , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Células Th17/metabolismo
20.
J Clin Invest ; 128(10): 4297-4312, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29990310

RESUMO

Induction of TLR2 activation depends on its association with the adapter protein MyD88. We have found that TLR2 and MyD88 levels are elevated in the hippocampus and cortex of patients with Alzheimer's disease (AD) and in a 5XFAD mouse model of AD. Since there is no specific inhibitor of TLR2, to target induced TLR2 from a therapeutic angle, we engineered a peptide corresponding to the TLR2-interacting domain of MyD88 (TIDM) that binds to the BB loop of only TLR2, and not other TLRs. Interestingly, WT TIDM peptide inhibited microglial activation induced by fibrillar Aß1-42 and lipoteichoic acid, but not 1-methyl-4-phenylpyridinium, dsRNA, bacterial lipopolysaccharide, flagellin, or CpG DNA. After intranasal administration, WT TIDM peptide reached the hippocampus, reduced hippocampal glial activation, lowered Aß burden, attenuated neuronal apoptosis, and improved memory and learning in 5XFAD mice. However, WT TIDM peptide was not effective in 5XFAD mice lacking TLR2. In addition to its effects in 5XFAD mice, WT TIDM peptide also suppressed the disease process in mice with experimental allergic encephalomyelitis and collagen-induced arthritis. Therefore, selective targeting of the activated status of 1 component of the innate immune system by WT TIDM peptide may be beneficial in AD as well as other disorders in which TLR2/MyD88 signaling plays a role in disease pathogenesis.


Assuntos
Doença de Alzheimer , Hipocampo/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Peptídeos/farmacologia , Receptor 2 Toll-Like/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Animais , Modelos Animais de Doenças , Feminino , Hipocampo/patologia , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Transgênicos , Fator 88 de Diferenciação Mieloide/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Receptor 2 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA