Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Stem Cells ; 42(1): 42-54, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-37798139

RESUMO

Bone marrow microenvironmental stimuli profoundly impact hematopoietic stem cell fate and biology. As G protein-coupled receptors, the bitter taste receptors (TAS2Rs) are key in transmitting extracellular stimuli into an intracellular response, within the oral cavity but also in extraoral tissues. Their expression in the bone marrow (BM)-derived cells suggests their involvement in sensing the BM microenvironmental fluctuation. In the present study, we demonstrated that umbilical cord blood (UCB)-derived CD34+ cells express fully functional TAS2Rs along with the signal transduction cascade components and their activation by the prototypical agonist, denatonium benzoate, significantly modulated genes involved in stemness maintenance and regulation of cell trafficking. The activation of these specific pathways was confirmed in functional in vitro experiments. Denatonium exposure exerted an antiproliferative effect on UCB-derived CD34+ cells, mainly affecting the most undifferentiated progenitor frequency. It also reduced their clonogenicity and repopulating potential in vitro. In addition, the TAS2R signaling activation impaired the UCB-derived CD34+ cell trafficking, mainly reducing the migration toward the chemoattractant agent CXCL12 and modulating the expression of the adhesion molecules CD62L, CD49d, and CD29. In conclusion, our results in UCB-derived CD34+ cells expand the observation of TAS2R expression in the setting of BM-resident cells and shed light on the role of TAS2Rs in the extrinsic regulation of hematopoietic stem cell functions.


Assuntos
Células-Tronco Hematopoéticas , Paladar , Células-Tronco Hematopoéticas/metabolismo , Compostos de Amônio Quaternário/farmacologia , Compostos de Amônio Quaternário/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Antígenos CD34/metabolismo
2.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37685903

RESUMO

Phospholipase C (PLC) enzymes represent crucial participants in the plasma membrane of mammalian cells, including the cardiac sarcolemmal (SL) membrane of cardiomyocytes. They are responsible for the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) into 1,2-diacylglycerol (DAG) and inositol (1,4,5) trisphosphate (Ins(1,4,5)P3), both essential lipid mediators. These second messengers regulate the intracellular calcium (Ca2+) concentration, which activates signal transduction cascades involved in the regulation of cardiomyocyte activity. Of note, emerging evidence suggests that changes in cardiomyocytes' phospholipid profiles are associated with an increased occurrence of cardiovascular diseases, but the underlying mechanisms are still poorly understood. This review aims to provide a comprehensive overview of the significant impact of PLC on the cardiovascular system, encompassing both physiological and pathological conditions. Specifically, it focuses on the relevance of PLCß isoforms as potential cardiac biomarkers, due to their implications for pathological disorders, such as cardiac hypertrophy, diabetic cardiomyopathy, and myocardial ischemia/reperfusion injury. Gaining a deeper understanding of the mechanisms underlying PLCß activation and regulation is crucial for unraveling the complex signaling networks involved in healthy and diseased myocardium. Ultimately, this knowledge holds significant promise for advancing the development of potential therapeutic strategies that can effectively target and address cardiac disorders by focusing on the PLCß subfamily.


Assuntos
Cardiopatias , Isoenzimas , Animais , Humanos , Fosfolipase C beta , Miócitos Cardíacos , Biomarcadores , Mamíferos
3.
Front Cell Neurosci ; 17: 1263310, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720548

RESUMO

Lamin B1 is an essential protein of the nuclear lamina that plays a crucial role in nuclear function and organization. It has been demonstrated that lamin B1 is essential for organogenesis and particularly brain development. The important role of lamin B1 in physiological brain development and aging has only recently been at the epicenter of attention and is yet to be fully elucidated. Regarding the development of brain, glial cells that have long been considered as supporting cells to neurons have overturned this representation and current findings have displayed their active roles in neurogenesis and cerebral development. Although lamin B1 has increased levels during the differentiation of the brain cells, during aging these levels drop leading to senescent phenotypes and inciting neurodegenerative disorders such as Alzheimer's and Parkinson's disease. On the other hand, overexpression of lamin B1 leads to the adult-onset neurodegenerative disease known as Autosomal Dominant Leukodystrophy. This review aims at highlighting the importance of balancing lamin B1 levels in glial cells and neurons from brain development to aging.

4.
Mol Neurobiol ; 60(11): 6362-6372, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37450245

RESUMO

Autosomal dominant leukodystrophy (ADLD) is an ultra-rare, slowly progressive, and fatal neurodegenerative disorder associated with the loss of white matter in the central nervous system (CNS). Several years after its first clinical description, ADLD was found to be caused by coding and non-coding variants in the LMNB1 gene that cause its overexpression in at least the brain of patients. LMNB1 encodes for Lamin B1, a protein of the nuclear lamina. Lamin B1 regulates many cellular processes such as DNA replication, chromatin organization, and senescence. However, its functions have not been fully characterized yet. Nevertheless, Lamin B1 together with the other lamins that constitute the nuclear lamina has firstly the key role of maintaining the nuclear structure. Being the nucleus a dynamic system subject to both biochemical and mechanical regulation, it is conceivable that changes to its structural homeostasis might translate into functional alterations. Under this light, this review aims at describing the pieces of evidence that to date have been obtained regarding the effects of LMNB1 overexpression on cellular morphology and functionality. Moreover, we suggest that further investigation on ADLD morpho-functional consequences is essential to better understand this complex disease and, possibly, other neurological disorders affecting CNS myelination.


Assuntos
Doenças Desmielinizantes , Doenças por Armazenamento dos Lisossomos , Doenças Neurodegenerativas , Humanos , Doenças Raras , Doenças Desmielinizantes/metabolismo , Encéfalo/metabolismo , Modelos Teóricos
5.
Clin Epigenetics ; 15(1): 27, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36803590

RESUMO

BACKGROUND: miRNAs are small non-coding RNAs that regulate gene expression and are linked to cancer development and progression. miRNA profiles are currently studied as new prognostic factors or therapeutic perspectives. Among hematological cancers, myelodysplastic syndromes at higher risk of evolution into acute myeloid leukemia are treated with hypomethylating agents, like azacitidine, alone or in combination with other drugs, such as lenalidomide. Recent data showed that, during azacitidine and lenalidomide therapy, the concurrent acquisition of specific point mutations affecting inositide signalling pathways is associated with lack or loss of response to therapy. As these molecules are implicated in epigenetic processes, possibly involving miRNA regulation, and in leukemic progression, through the regulation of proliferation, differentiation and apoptosis, here we performed a new miRNA expression analysis of 26 high-risk patients with myelodysplastic syndromes treated with azacitidine and lenalidomide at baseline and during therapy. miRNA array data were processed, and bioinformatic results were correlated with clinical outcome to investigate the translational relevance of selected miRNAs, while the relationship between selected miRNAs and specific molecules was experimentally tested and proven. RESULTS: Patients' overall response rate was 76.9% (20/26 cases): complete remission (5/26, 19.2%), partial remission (1/26, 3.8%), marrow complete remission (2/26, 7.7%), hematologic improvement (6/26, 23.1%), hematologic improvement with marrow complete remission (6/26, 23.1%), whereas 6/26 patients (23.1%) had a stable disease. miRNA paired analysis showed a statistically significant up-regulation of miR-192-5p after 4 cycles of therapy (vs baseline), that was confirmed by real-time PCR analyses, along with an involvement of BCL2, that was proven to be a miR-192-5p target in hematopoietic cells by luciferase assays. Furthermore, Kaplan-Meier analyses showed a significant correlation between high levels of miR-192-5p after 4 cycles of therapy and overall survival or leukemia-free survival, that was stronger in responders, as compared with patients early losing response and non-responders. CONCLUSIONS: This study shows that high levels of miR-192-5p are associated with higher overall survival and leukemia-free survival in myelodysplastic syndromes responding to azacitidine and lenalidomide. Moreover, miR-192-5p specifically targets and inhibits BCL2, possibly regulating proliferation and apoptosis and leading to the identification of new therapeutic targets.


Assuntos
Leucemia Mieloide Aguda , MicroRNAs , Síndromes Mielodisplásicas , Humanos , Azacitidina/farmacologia , Azacitidina/uso terapêutico , Lenalidomida/farmacologia , Lenalidomida/uso terapêutico , MicroRNAs/genética , Metilação de DNA , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Leucemia Mieloide Aguda/genética , Proteínas Proto-Oncogênicas c-bcl-2
6.
Biomolecules ; 12(3)2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35327539

RESUMO

Renal failure is a worldwide disease with a continuously increasing prevalence and involving a rising need for long-term treatment, mainly by haemodialysis. Arteriovenous fistula (AVF) is the favourite type of vascular access for haemodialysis; however, the lasting success of this therapy depends on its maturation, which is directly influenced by many concomitant processes such as vein wall thickening or inflammation. Understanding the molecular mechanisms that drive AVF maturation and failure can highlight new or combinatorial drugs for more personalized therapy. In this review we analysed the relevance of critical enzymes such as PI3K, AKT and mTOR in processes such as wall thickening remodelling, immune system activation and inflammation reduction. We focused on these enzymes due to their involvement in the modulation of numerous cellular activities such as proliferation, differentiation and motility, and their impairment is related to many diseases such as cancer, metabolic syndrome and neurodegenerative disorders. In addition, these enzymes are highly druggable targets, with several inhibitors already being used in patient treatment for cancer and with encouraging results for AVF. Finally, we delineate how these enzymes may be targeted to control specific aspects of AVF in an effort to propose a more specialized therapy with fewer side effects.


Assuntos
Fístula Arteriovenosa , Derivação Arteriovenosa Cirúrgica , Falência Renal Crônica , Fístula Arteriovenosa/etiologia , Derivação Arteriovenosa Cirúrgica/efeitos adversos , Derivação Arteriovenosa Cirúrgica/métodos , Feminino , Humanos , Inflamação/etiologia , Falência Renal Crônica/terapia , Masculino , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR
7.
Cell Mol Life Sci ; 79(4): 195, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35303162

RESUMO

Glioblastoma represents the most lethal brain tumor in adults. Several studies have shown the key role of phospholipase C ß1 (PLCß1) in the regulation of many mechanisms within the central nervous system suggesting PLCß1 as a novel signature gene in the molecular classification of high-grade gliomas. This study aims to determine the pathological impact of PLCß1 in glioblastoma, confirming that PLCß1 gene expression correlates with glioma's grade, and it is lower in 50 glioblastoma samples compared to 20 healthy individuals. PLCß1 silencing in cell lines and primary astrocytes, leads to increased cell migration and invasion, with the increment of mesenchymal transcription factors and markers, as Slug and N-Cadherin and metalloproteinases. Cell proliferation, through increased Ki-67 expression, and the main survival pathways, as ß-catenin, ERK1/2 and Stat3 pathways, are also affected by PLCß1 silencing. These data suggest a potential role of PLCß1 in maintaining a normal or less aggressive glioma phenotype.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proliferação de Células/genética , Glioblastoma/patologia , Glioma/patologia , Humanos , Fosfolipase C beta/genética , Fosfolipase C beta/metabolismo
8.
Cell Mol Life Sci ; 79(2): 126, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35132494

RESUMO

B-type lamins are fundamental components of the nuclear lamina, a complex structure that acts as a scaffold for organization and function of the nucleus. Lamin B1 and B2, the most represented isoforms, are encoded by LMNB1 and LMNB2 gene, respectively. All B-type lamins are synthesized as precursors and undergo sequential post-translational modifications to generate the mature protein. B-type lamins are involved in a wide range of nuclear functions, including DNA replication and repair, regulation of chromatin and nuclear stiffness. Moreover, lamins B1 and B2 regulate several cellular processes, such as tissue development, cell cycle, cellular proliferation, senescence, and DNA damage response. During embryogenesis, B-type lamins are essential for organogenesis, in particular for brain development. As expected from the numerous and pivotal functions of B-type lamins, mutations in their genes or fluctuations in their expression levels are critical for the onset of several diseases. Indeed, a growing range of human disorders have been linked to lamin B1 or B2, increasing the complexity of the group of diseases collectively known as laminopathies. This review highlights the recent findings on the biological role of B-type lamins under physiological or pathological conditions, with a particular emphasis on brain disorders and cancer.


Assuntos
Encefalopatias/metabolismo , Lamina Tipo B/fisiologia , Laminopatias/metabolismo , Neoplasias/metabolismo , Animais , Humanos
9.
Adv Biol Regul ; 83: 100838, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34819252

RESUMO

Phosphoinositide-specific phospholipases C (PLCs) are a class of enzymes involved in several cell activities, such as cell cycle regulation, proliferation, differentiation and cytoskeletal dynamics. Among these enzymes, PLCγ1 is one of the most expressed PLCs in the brain, contributing to a complex network in the developing nervous system. Several studies have shown that PLCγ1 signaling imbalance is linked to several brain disorders, including glioblastoma, the most aggressive brain tumor in adults. Indeed, it has been demonstrated a link between PLCγ1 inhibition and the arrest of glioma cell motility of fetal rat brain aggregates and the impairment of cell invasion abilities following its down-regulation. This study aims to determine the pathological influence of PLCγ1 in glioblastoma, through a translational study which combines in silico data, data from glioblastoma patients' samples and data on engineered cell lines. We found out that PLCγ1 gene expression correlates with the pathological grade of gliomas, and it is higher in fifty patients' glioblastoma tissue samples compared to twenty healthy controls. Moreover, it was demonstrated that PLCγ1 silencing in U87-MG leads to a reduction in cell migration and invasion abilities. The opposite trend was observed following PLCγ1 overexpression, suggesting an interesting possible involvement of PLCγ1 in gliomas' aggressiveness.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Humanos , Invasividade Neoplásica/genética , Ratos , Transdução de Sinais
10.
Cells ; 10(10)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34685544

RESUMO

Autosomal dominant leukodystrophy (ADLD) is an extremely rare and fatal neurodegenerative disease due to the overexpression of the nuclear lamina component Lamin B1. Many aspects of the pathology still remain unrevealed. This work highlights the effect of Lamin B1 accumulation on different cellular functions in an ADLD astrocytic in vitro model. Lamin B1 overexpression induces alterations in cell survival signaling pathways with GSK3ß inactivation, but not the upregulation of ß-catenin targets, therefore resulting in a reduction in astrocyte survival. Moreover, Lamin B1 build up affects proliferation and cell cycle progression with an increase of PPARγ and p27 and a decrease of Cyclin D1. These events are also associated to a reduction in cell viability and an induction of apoptosis. Interestingly, ADLD astrocytes trigger a tentative activation of survival pathways that are ineffective. Finally, astrocytes overexpressing Lamin B1 show increased immunoreactivity for both GFAP and vimentin together with NF-kB phosphorylation and c-Fos increase, suggesting astrocytes reactivity and substantial cellular activation. These data demonstrate that Lamin B1 accumulation is correlated to biochemical, metabolic, and morphologic remodeling, probably related to the induction of a reactive astrocytes phenotype that could be strictly associated to ADLD pathological mechanisms.


Assuntos
Astrócitos/metabolismo , Lamina Tipo B/efeitos adversos , Doenças Neurodegenerativas/fisiopatologia , Doença de Pelizaeus-Merzbacher/fisiopatologia , Humanos
11.
Front Oncol ; 11: 678824, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34109125

RESUMO

Polyphosphoinositides (PPIns) and their modulating enzymes are involved in regulating many important cellular functions including proliferation, differentiation or gene expression, and their deregulation is involved in human diseases such as metabolic syndromes, neurodegenerative disorders and cancer, including Acute Myeloid Leukemia (AML). Given that PPIns regulating enzymes are highly druggable targets, several studies have recently highlighted the potential of targeting them in AML. For instance many inhibitors targeting the PI3K pathway are in various stages of clinical development and more recently other novel enzymes such as PIP4K2A have been implicated as AML targets. PPIns have distinct subcellular organelle profiles, in part driven by the specific localisation of enzymes that metabolise them. In particular, in the nucleus, PPIns are regulated in response to various extracellular and intracellular pathways and interact with specific nuclear proteins to control epigenetic cell state. While AML does not normally manifest with as many mutations as other cancers, it does appear in large part to be a disease of dysregulation of epigenetic signalling and many novel therapeutics are aimed at reprogramming AML cells toward a differentiated cell state or to one that is responsive to alternative successful but limited AML therapies such as ATRA. Here, we propose that by combining bioinformatic analysis with inhibition of PPIns pathways, especially within the nucleus, we might discover new combination therapies aimed at reprogramming transcriptional output to attenuate uncontrolled AML cell growth. Furthermore, we outline how different part of a PPIns signalling unit might be targeted to control selective outputs that might engender more specific and therefore less toxic inhibitory outcomes.

12.
Int J Mol Sci ; 22(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467674

RESUMO

Erythropoiesis regulation is essential in normal physiology and pathology, particularly in myelodysplastic syndromes (MDS) and ß-thalassemia. Several signaling transduction processes, including those regulated by inositides, are implicated in erythropoiesis, and the latest MDS or ß-thalassemia preclinical and clinical studies are now based on their regulation. Among others, the main pathways involved are those regulated by transforming growth factor (TGF)-ß, which negatively regulates erythrocyte differentiation and maturation, and erythropoietin (EPO), which acts on the early-stage erythropoiesis. Also small mother against decapentaplegic (SMAD) signaling molecules play a role in pathology, and activin receptor ligand traps are being investigated for future clinical applications. Even inositide-dependent signaling, which is important in the regulation of cell proliferation and differentiation, is specifically associated with erythropoiesis, with phospholipase C (PLC) and phosphatidylinositol 3-kinase (PI3K) as key players that are becoming increasingly important as new promising therapeutic targets. Additionally, Roxadustat, a new erythropoiesis stimulating agent targeting hypoxia inducible factor (HIF), is under clinical development. Here, we review the role and function of the above-mentioned signaling pathways, and we describe the state of the art and new perspectives of erythropoiesis regulation in MDS and ß-thalassemia.


Assuntos
Eritropoese , Síndromes Mielodisplásicas/metabolismo , Transdução de Sinais , Talassemia beta/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Ensaios Clínicos como Assunto , Eritropoetina/metabolismo , Glicina/análogos & derivados , Glicina/farmacologia , Hematínicos/uso terapêutico , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Isoquinolinas/farmacologia , Ligantes , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fosfolipases Tipo C/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-35010658

RESUMO

The University of Bologna School of Medicine in 2003 adopted a near-peer teaching (NPT) program with senior medical students teaching and assisting younger students in human anatomy laboratories. This study aimed to evaluate the effectiveness and outcomes of this program-unique on the Italian academic panorama-from the tutors' perspective. An anonymous online survey was administered to all those who acted as peer tutors in the period from 2003 to 2021; it evaluated tutors' perceptions regarding the influence of the tutoring experience on their skillset gains, academic performance, and professional career. Furthermore, tutors were asked to express their views on the value of cadaver dissection in medical education and professional development. The overall perception of the NPT program was overwhelmingly positive and the main reported benefits were improved long-term knowledge retention and academic performance, improved communication, team-working and time management skills, and enhanced self-confidence and motivation. Most tutors strongly believed that cadaver dissection was an invaluable learning tool in medical education, helped them to develop professionalism and human values, and positively influenced the caring of their future patients. Nearly all the participants highlighted the importance of voluntary body donation for medical education and research. The present results supported the thesis that tutors themselves benefited from the act of teaching peers; this impactful experience equipped them with a wide range of transferable skills that they could draw on as future educators and healthcare professionals.


Assuntos
Educação Médica , Estudantes de Medicina , Adolescente , Humanos , Aprendizagem , Motivação , Grupo Associado , Ensino
14.
Cell Mol Life Sci ; 78(6): 2781-2795, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33034697

RESUMO

Autosomal-dominant leukodystrophy (ADLD) is a rare fatal neurodegenerative disorder with overexpression of the nuclear lamina component, Lamin B1 due to LMNB1 gene duplication or deletions upstream of the gene. The molecular mechanisms responsible for driving the onset and development of this pathology are not clear yet. Vacuolar demyelination seems to be one of the most significant histopathological observations of ADLD. Considering the role of oligodendrocytes, astrocytes, and leukemia inhibitory factor (LIF)-activated signaling pathways in the myelination processes, this work aims to analyze the specific alterations in different cell populations from patients with LMNB1 duplications and engineered cellular models overexpressing Lamin B1 protein. Our results point out, for the first time, that astrocytes may be pivotal in the evolution of the disease. Indeed, cells from ADLD patients and astrocytes overexpressing LMNB1 show severe ultrastructural nuclear alterations, not present in oligodendrocytes overexpressing LMNB1. Moreover, the accumulation of Lamin B1 in astrocytes induces a reduction in LIF and in LIF-Receptor (LIF-R) levels with a consequential decrease in LIF secretion. Therefore, in both our cellular models, Jak/Stat3 and PI3K/Akt axes, downstream of LIF/LIF-R, are downregulated. Significantly, the administration of exogenous LIF can partially reverse the toxic effects induced by Lamin B1 accumulation with differences between astrocytes and oligodendrocytes, highlighting that LMNB1 overexpression drastically affects astrocytic function reducing their fundamental support to oligodendrocytes in the myelination process. In addition, inflammation has also been investigated, showing an increased activation in ADLD patients' cells.


Assuntos
Astrócitos/metabolismo , Doenças Desmielinizantes/patologia , Lamina Tipo B/metabolismo , Transdução de Sinais , Astrócitos/citologia , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Células Cultivadas , Doenças Desmielinizantes/metabolismo , Regulação para Baixo/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Mediadores da Inflamação/metabolismo , Lamina Tipo B/genética , Fator Inibidor de Leucemia/metabolismo , Fator Inibidor de Leucemia/farmacologia , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Receptores de OSM-LIF/metabolismo , Regulação para Cima/efeitos dos fármacos
15.
Ann Anat ; 234: 151660, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33340651

RESUMO

Human body dissection is fundamental in medical education, as it allows future physicians to learn about the body's morphology in three dimensions, to recognize anatomical variations and to develop and increase the essential qualities of respect, compassion and empathy for patients. It is equally important in clinical training as it allows surgeons to improve their manual dexterity and practical skills and to test innovative surgical techniques and devices. In Italy prior to 2020, body acquisition and use for study and research purposes were regulated by a generic set of old directives and national decrees which dealt only marginally with these issues. However, in 2013, a whole body donation program was officially set up at the Institute of Human Anatomy of the University of Bologna. Completely free and voluntary informed consent has always been regarded as a core prerequisite and, since its inception, the program exclusively accepted bequeathed bodies. On February 10, 2020, a specific law governing the disposition of post mortem human body and tissues for study, training and scientific research purposes was definitively enacted. The present work traces the University of Bologna's experience leading to the whole body donation program and the brand new dissecting room. It describes the program of Bologna as an example of "good practice" in body donation, aimed at ensuring education and clinical training by means of both traditional gross anatomy and innovative technology. Moreover, it analyzes the results achieved in terms of increased donor enrollment and improved teaching/training quality and the strengths of this program in light of the provisions enshrined in the new law.


Assuntos
Anatomia , Corpo Humano , Anatomia/educação , Cadáver , Dissecação , Humanos , Doadores de Tecidos , Universidades , Ocidente
16.
Adv Biol Regul ; 79: 100771, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33303387

RESUMO

Phosphoinositide-specific phospholipases C (PI-PLCs) are a class of enzymes involved in the phosphatidylinositol metabolism, which is implicated in the activation of several signaling pathways and which controls several cellular processes. The scientific community has long accepted the existence of a nuclear phosphoinositide (PI) metabolism, independent from the cytoplasmic one, critical in nuclear function control. Indeed, nuclear PIs are involved in many activities, such as cell cycle regulation, cell proliferation, cell differentiation, membrane transport, gene expression and cytoskeletal dynamics. There are several types of PIs and enzymes implicated in brain activities and among these enzymes, PI-PLCs contribute to a specific and complex network in the developing nervous system. Moreover, considering the abundant presence of PI-PLCß1, PI-PLCγ1 and PI-PLCß4 in the brain, a specific role for each PLC subtype has been suggested in the control of neuronal activity, which is important for synapse function, development and other mechanisms. The focus of this review is to describe the latest research about the involvement of PI-PLC signaling in the nervous system, both physiologically and in pathological conditions. Indeed, PI-PLC signaling imbalance seems to be also linked to several brain disorders including epilepsy, movement and behavior disorders, neurodegenerative diseases and, in addition, some PI-PLC subtypes could become potential novel signature genes for high-grade gliomas.


Assuntos
Encefalopatias/enzimologia , Encéfalo/enzimologia , Fosfoinositídeo Fosfolipase C/metabolismo , Animais , Encéfalo/metabolismo , Encefalopatias/genética , Encefalopatias/metabolismo , Encefalopatias/patologia , Humanos , Fosfatidilinositóis/metabolismo , Fosfoinositídeo Fosfolipase C/genética , Transdução de Sinais
17.
FASEB J ; 34(11): 15400-15416, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32959428

RESUMO

MDS are characterized by anemia and transfusion requirements. Transfused patients frequently show iron overload that negatively affects hematopoiesis. Iron chelation therapy can be effective in these MDS cases, but the molecular consequences of this treatment need to be further investigated. That is why we studied the molecular features of iron effect and Deferasirox therapy on PI-PLCbeta1 inositide signaling, using hematopoietic cells and MDS samples. At baseline, MDS patients showing a positive response after iron chelation therapy displayed higher levels of PI-PLCbeta1/Cyclin D3/PKCalpha expression. During treatment, these responder patients, as well as hematopoietic cells treated with FeCl3 and Deferasirox, showed a specific reduction of PI-PLCbeta1/Cyclin D3/PKCalpha expression, indicating that this signaling pathway is targeted by Deferasirox. The treatment was also able to specifically decrease the production of ROS. This effect correlated with a reduction of IL-1A and IL-2, as well as Akt/mTOR phosphorylation. In contrast, cells exposed only to FeCl3 and cells from MDS patients refractory to Deferasirox showed a specific increase of ROS and PI-PLCbeta1/Cyclin D3/PKCalpha expression. All in all, our data show that PI-PLCbeta1 signaling is a target for iron-induced oxidative stress and suggest that baseline PI-PLCbeta1 quantification could predict iron chelation therapy response in MDS.


Assuntos
Ciclina D3/metabolismo , Sobrecarga de Ferro/complicações , Ferro/efeitos adversos , Síndromes Mielodisplásicas/terapia , Estresse Oxidativo/efeitos dos fármacos , Fosfolipase C beta/metabolismo , Proteína Quinase C-alfa/metabolismo , Idoso , Transfusão de Sangue/estatística & dados numéricos , Ciclina D3/genética , Deferasirox/farmacologia , Feminino , Regulação da Expressão Gênica , Humanos , Quelantes de Ferro/farmacologia , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/patologia , Fosfolipase C beta/genética , Fosforilação , Proteína Quinase C-alfa/genética , Transdução de Sinais
18.
Int J Mol Sci ; 21(15)2020 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-32722576

RESUMO

An increasing number of reports suggests a significant involvement of the phosphoinositide (PI) cycle in cancer development and progression. Diacylglycerol kinases (DGKs) are very active in the PI cycle. They are a family of ten members that convert diacylglycerol (DAG) into phosphatidic acid (PA), two-second messengers with versatile cellular functions. Notably, some DGK isoforms, such as DGKα, have been reported to possess promising therapeutic potential in cancer therapy. However, further studies are needed in order to better comprehend their involvement in cancer. In this review, we highlight that DGKs are an essential component of the PI cycle that localize within several subcellular compartments, including the nucleus and plasma membrane, together with their PI substrates and that they are involved in mediating major cancer cell mechanisms such as growth and metastasis. DGKs control cancer cell survival, proliferation, and angiogenesis by regulating Akt/mTOR and MAPK/ERK pathways. In addition, some DGKs control cancer cell migration by regulating the activities of the Rho GTPases Rac1 and RhoA.


Assuntos
Movimento Celular , Diacilglicerol Quinase/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimologia , Animais , Diglicerídeos/metabolismo , Humanos , Neoplasias/patologia
19.
Adv Biol Regul ; 76: 100722, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32362560

RESUMO

The immune system is a complex network that acts to protect vertebrates from foreign microorganisms and carries out immunosurveillance to combat cancer. In order to avoid hyper-activation of the immune system leading to collateral damage tissues and organs and to prevent self-attack, the network has the intrinsic control mechanisms that negatively regulate immune responses. Central to this negative regulation are regulatory T (T-Reg) cells, which through cytokine secretion and cell interaction limit uncontrolled clonal expansion and functions of activated immune cells. Given that positive or negative manipulation of T-Regs activity could be utilised to therapeutically treat host versus graft rejection or cancer respectively, understanding how signaling pathways impact on T-Regs function should reveal potential targets with which to intervene. The phosphatidylinositol-3-kinase (PI3K) pathway controls a vast array of cellular processes and is critical in T cell activation. Here we focus on phosphoinositide 3-kinases (PI3Ks) and their ability to regulate T-Regs cell differentiation and function.


Assuntos
Fatores de Transcrição Forkhead/imunologia , Neoplasias/imunologia , Fosfatidilinositol 3-Quinases/imunologia , Subunidades Proteicas/imunologia , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Animais , Antineoplásicos Imunológicos/uso terapêutico , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Imunoterapia/métodos , Ativação Linfocitária , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositóis/imunologia , Fosfatidilinositóis/metabolismo , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/patologia , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Células Th17/patologia , Células Th2/efeitos dos fármacos , Células Th2/imunologia , Células Th2/patologia , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/patologia
20.
Int J Mol Sci ; 21(7)2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32276377

RESUMO

Phosphoinositides (PI) form just a minor portion of the total phospholipid content in cells but are significantly involved in cancer development and progression. In several cancer types, phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] play significant roles in regulating survival, proliferation, invasion, and growth of cancer cells. Phosphoinositide-specific phospholipase C (PLC) catalyze the generation of the essential second messengers diacylglycerol (DAG) and inositol 1,4,5 trisphosphate (InsP3) by hydrolyzing PtdIns(4,5)P2. DAG and InsP3 regulate Protein Kinase C (PKC) activation and the release of calcium ions (Ca2+) into the cytosol, respectively. This event leads to the control of several important biological processes implicated in cancer. PLCs have been extensively studied in cancer but their regulatory roles in the oncogenic process are not fully understood. This review aims to provide up-to-date knowledge on the involvement of PLCs in cancer. We focus specifically on PLCß, PLCγ, PLCδ, and PLCε isoforms due to the numerous evidence of their involvement in various cancer types.


Assuntos
Neoplasias/enzimologia , Fosfatidilinositóis/metabolismo , Fosfoinositídeo Fosfolipase C/metabolismo , Transdução de Sinais , Animais , Diglicerídeos/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Proteína Quinase C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA