Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomimetics (Basel) ; 9(2)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38392156

RESUMO

Loss of an upper limb exerts a negative influence on an individual's ability to perform their activities of daily living (ADLs), reducing quality of life and self-esteem. A prosthesis capable of performing basic ADLs functions has the capability of restoring independence and autonomy to amputees. However, current technologies present in robotic prostheses are based on rigid actuators with several drawbacks, such as high weight and low compliance. Recent advances in robotics have allowed for the development of flexible actuators and artificial muscles to overcome the limitations of rigid actuators. Dielectric elastomer actuators (DEAs) consist of a thin elastomer membrane arranged between two compliant electrodes capable of changing dimensions when stimulated with an electrical potential difference. In this work, we present the design and testing of a finger prosthesis driven by two DEAs arranged as agonist-antagonist pairs as artificial muscles. The soft actuators are designed as fiber-constrained dielectric elastomers (FCDE), enabling displacement in just one direction as natural muscles. The finger prosthesis was designed and modeled to show bend movement using just one pair of DEAs and was made of PLA in an FDM 3D printer to be lightweight. The experimental results show great agreement with the proposed model and indicate that the proposed finger prosthesis is promising in overcoming the limitations of the current rigid based actuators.

2.
Biomimetics (Basel) ; 8(3)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37504205

RESUMO

Degenerative diseases and injuries that compromise hand movement reduce individual autonomy and tend to cause financial and psychological problems to their family nucleus. To mitigate these limitations, over the past decade, hand exoskeletons have been designed to rehabilitate or enhance impaired hand movements. Although promising, these devices still have limitations, such as weight and cost. Moreover, the movements performed are not kinematically compatible with the joints, thereby reducing the achievements of the rehabilitation process. This article presents the biomimetic design of a soft hand exoskeleton actuated using artificial tendons designed to achieve low weight, volume, and cost, and to improve kinematic compatibility with the joints, comfort, and the sensitivity of the hand by allowing direct contact between the hand palm and objects. We employed two twisted string actuators and Bowden cables to move the artificial tendons and perform the grasping and opening of the hand. With this configuration, the heavy part of the system was reallocated to a test bench, allowing for a lightweight set of just 232 g attached to the arm. The system was triggered by the myoelectric signals of the biceps captured from the user's skin to encourage the active participation of the user in the process. The device was evaluated by five healthy subjects who were asked to simulate a paralyzed hand, and manipulate different types of objects and perform grip strength. The results showed that the system was able to identify the intention of movement of the user with an accuracy of 90%, and the orthosis was able to enhance the ability of handling objects with gripping force up to 1.86 kgf.

3.
Zookeys ; 959: 87-97, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32879611

RESUMO

Dissomphalus is a cosmopolitan genus of Bethylidae and has 269 Neotropical species divided into 32 species-groups, mostly defined by the genital and the tergal process structures. Dissomphalus rectilineus and D. concavatus are sympatric species in the ulceratus species-group. Members of the species-group share many similarities in the morphology of the head, hypopygium, tergal process and genitalia, but may be distinguished by the structure of the hypopygium. Previous studies have found intermediate structures of the hypopygium in the sympatric areas and raised questions about the distinctiveness of these two species. We sequenced 340 bp of the mitochondrial gene cytochrome oxidase I of 29 specimens from Brazil and Paraguay, calculated the genetic divergence among specimens, and recovered the phylogenetic relationships between taxa. In addition, we compared the morphology of the hypopygium to evaluate its use as a species-specific diagnostic character using the genetic divergence values. We recovered three well-supported monophyletic groups (intraclade divergence from 1.3 to 13.4%) and three hypopygium morphologies associated with each clade, two of them associated with D. rectilineus and D. concavatus (as described in the literature); the third one is new, not associated with any known species. The divergence between the D. rectilineus and D. concavatus clades was 19%, while the third clade is divergent from each species by 19-20%. If fully described, the hypopygium shape associated with the COI sequence will represent an extremely promising approach to the diagnosis of Dissomphalus species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA