RESUMO
Steady hematopoiesis is essential for lifelong production of all mature blood cells. Hematopoietic stem and progenitor cells (HSPCs) found in the bone marrow ensure hematopoietic homeostasis in an organism. Failure of this complex process, which involves a fine balance of self-renewal and differentiation fates, often result in severe hematological conditions such as leukemia and lymphoma. Several molecular and metabolic programs, internal or in close interaction with the bone marrow niche, have been identified as important regulators of HSPC function. More recently, nutrient sensing pathways have emerged as important modulators of HSC homing, dormancy, and function in the bone marrow. Here we describe a method for reliable measurement of various amino acids and minerals in different rare bone marrow (BM) populations, namely HSPCs. We found that the amino acid profile of the most primitive hematopoietic compartments (KLS) did not differ significantly from the one of their direct progenies (common myeloid progenitor CMP), while granulocyte-monocyte progenitors (GMPs), on the opposite of megakaryocyte-erythroid progenitors (MEPs), have higher content of the majority of amino acids analyzed. Additionally, we identified intermediates of the urea cycle to be differentially expressed in the KLS population and were found to lower mitochondrial membrane potential, an established readout on self-renewal capability. Moreover, we were able to profile for the first time 12 different minerals and detect differences in elemental contents between different HSPC compartments. Importantly, essential dietary trace elements, such as iron and molybdenum, were found to be enriched in granulocyte-monocyte progenitors (GMPs). We envision this amino acid and mineral profiling will allow identification of novel metabolic and nutrient sensing pathways important in HSPC fate regulation.
Assuntos
Aminoácidos/análise , Medula Óssea/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Minerais/análise , Animais , Medula Óssea/crescimento & desenvolvimento , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Feminino , Células-Tronco Hematopoéticas/citologia , CamundongosRESUMO
We developed and validated a reliable, robust, and easy-to-implement quantitative method for multielemental analysis of low-volume samples. Our ICP-MS-based method comprises the analysis of 20 elements (Mg, P, S, K, Ca, V, Cr, Mn, Fe, Co, Cu, Zn, Se, Br, Rb, Sr, Mo, I, Cs, and Ba) in 10 µL of serum and 12 elements (Mg, S, Mn, Fe, Co, Cu, Zn Se, Br, Rb, Mo, and Cs) in less than 250â¯000 cells. As a proof-of-concept, we analyzed the elemental profiles of serum and sorted immune T cells derived from naiÌve and tumor-bearing mice. The results indicate a tumor systemic effect on the elemental profiles of both serum and T cells. Our approach highlights promising applications of multielemental analysis in precious samples such as rare cell populations or limited volumes of biofluids that could provide a deeper understanding of the essential role of elements as cofactors in biological and pathological processes.
Assuntos
Compostos Inorgânicos/análise , Espectrometria de Massas/métodos , Neoplasias/química , Animais , Linhagem Celular Tumoral , Cobre/análise , Cobre/sangue , Compostos Inorgânicos/sangue , Limite de Detecção , Magnésio/análise , Magnésio/sangue , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/patologia , Linfócitos T/química , Linfócitos T/citologia , Linfócitos T/metabolismo , Transplante Homólogo , Zinco/análise , Zinco/sangueRESUMO
The intake of adequate amounts and types of nutrients is key for sustaining health and a good quality of life, particularly in the elderly population. There is considerable evidence suggesting that physiological changes related to age and sex modify nutritional needs, and this may be related to age-associated changes in body composition (BC), specifically in lean and fat body mass. However, there is a clear lack of understanding about the association of nutrients in blood and BC parameters in the elderly. This study investigated the relationships among blood nutrients (amino acids, fatty acids, major elements, trace-elements, and vitamins), BC and nutrient intake in a population of 176 healthy male and female Italian adults between the ages of 65 and 79 years. 89 blood markers, 77 BC parameters and dietary intake were evaluated. Multivariate data analysis was applied to infer relationships between datasets. As expected, the major variability between BC and the blood nutrient profile (BNP) observed was related to sex. Aside from clear sex-specific differences in BC, female subjects had higher BNP levels of copper, copper-to-zinc ratio, phosphorous and holotranscobalamin II and lower concentrations of branched-chain amino acids (BCAAs) and proline. Fat mass, percentage of fat mass, percentage of lean mass and the skeletal muscle index (SMI) correlated the most with BNP in both sexes. Our data showed positive correlations in male subjects among ethanolamine, glycine, albumin, and sulfur with SMI, while palmitoleic acid and oleic acid exhibited negative correlations. This differed in female subjects, where SMI was positively associated with albumin, folic acid and sulfur, while CRP, proline and cis-8,11,14-eicosatrienoic acid were negatively correlated. We investigated the influence of diet on the observed BNP and BC correlations. Intriguingly, most of the components of the BNP, except for folate, did not exhibit a correlation with nutrient intake data. An understanding of the physiological and biochemical processes underpinning the observed sex-specific correlations between BNP and BC could help in identifying nutritional strategies to manage BC-changes in aging. This would contribute to a deeper understanding of aging-associated nutritional needs with the aim of helping the elderly population to maintain metabolic health.