Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mycopathologia ; 179(1-2): 21-30, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25205196

RESUMO

Sporotrichosis is a chronic infection caused by the dimorphic fungus Sporothrix schenckii, involving all layers of skin and the subcutaneous tissue. The role of innate immune toll-like receptors 2 and 4 in the defense against this fungus has been reported, but so far, there were no studies on the effect of cell wall major components over the cytosolic oligo-merization domain (NOD)-like receptors, important regulators of inflammation and responsible for the maturation of IL-1ß and IL-18, whose functions are dependents of the caspase-1 activation, that can participate of inflammasome. It was evaluated the percentage of activation of caspase-1, the production of IL-1ß, IL-18, IL-17, IFN-γ and nitric oxide in a Balb/c model of S. schenckii infection. It was observed a decreased activity of caspase-1 during the fourth and sixth weeks of infection accompanied by reduced secretion of the cytokines IL-1ß, IL-18 and IL-17 and high production of nitric oxide. IFN-γ levels were elevated during the entire time course of infection. This temporal reduction in caspase-1 activity coincides exactly with the reported period of fungal burden associated with a transitory immunosuppression induced by this fungus and detected in similar infection models. These results indicate the importance of interaction between caspase-1, cytokines IL-1ß and IL-18 in the host defense against S. schenckii infection, suggesting a participation the inflammasome in this response.


Assuntos
Caspase 1/metabolismo , Interferon gama/biossíntese , Óxido Nítrico/biossíntese , Sporothrix/imunologia , Esporotricose/imunologia , Animais , Parede Celular , Ativação Enzimática , Inflamassomos/imunologia , Interleucina-17/biossíntese , Interleucina-18/biossíntese , Interleucina-1beta/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pele/microbiologia , Pele/patologia
2.
Mediators Inflamm ; 2014: 767061, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24574582

RESUMO

Very little is known about the immunomodulatory potential of secondary metabolites isolated from marine microorganisms. In the present study, we characterized pyrenocine A, which is produced by the marine-derived fungus Penicillium paxilli Ma(G)K and possesses anti-inflammatory activity. Pyrenocine A was able to suppress, both pretreatment and posttreatment, the LPS-induced activation of macrophages via the inhibition of nitrite production and the synthesis of inflammatory cytokines and PGE2. Pyrenocine A also exhibited anti-inflammatory effects on the expression of receptors directly related to cell migration (Mac-1) as well as costimulatory molecules involved in lymphocyte activation (B7.1). Nitrite production was inhibited by pyrenocine A in macrophages stimulated with CpG but not Poly I:C, suggesting that pyrenocine A acts through the MyD88-dependent intracellular signaling pathway. Moreover, pyrenocine A is also able to inhibit the expression of genes related to NF κ B-mediated signal transduction on macrophages stimulated by LPS. Our results indicate that pyrenocine A has promissory anti-inflammatory properties and additional experiments are necessary to confirm this finding in vivo model.


Assuntos
Anti-Inflamatórios/farmacologia , Dinoprostona/metabolismo , Lipopolissacarídeos/química , Penicillium/química , Animais , Anti-Inflamatórios/química , Adesão Celular , Linhagem Celular , Membrana Celular/metabolismo , Ilhas de CpG , Citocinas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Imunossupressores/química , Inflamação , Ativação Linfocitária , Ativação de Macrófagos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , Nitritos/química , Pironas/química , Pironas/farmacologia , Transdução de Sinais
3.
Microbiol Immunol ; 51(10): 1021-8, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17951992

RESUMO

Th1 cells, in cooperation with activated macrophages, are required to overcome Yersinia enterocolitica infection in mice. The pathway macrophages utilize to metabolize arginine can alter the outcome of inflammation in different ways. The objective of this study was to verify the pattern of macrophages activation in Y. enterocolitica infection of BALB/c (Yersinia-susceptible) and C57BL/6 (Yersinia-resistant) mice. Both strains of mice were infected with Y. enterocolitica O:8 WA 2707. Peritoneal macrophages and spleen cells were obtained on the 1st, 3rd and 5th day post-infection. The iNOS and the arginase activities were assayed in supernatants of macrophage cultures, by measuring their NO/citrulline and ornithine products, respectively. TGFbeta-1 production was also assayed. The Th1 and Th2 responses were evaluated in supernatants of lymphocyte cultures, by IFN-gamma and IL-4 production. Our results showed that in the early phase of Y. enterocolitica infection (1st and 3rd day), the macrophages from C57BL/6 mice produced higher levels of NO/citrulline and lower levels of ornithine than macrophages from BALB/c mice. The infection with Y. enterocolitica leads to an increase in the TGF-beta1 and IL-4 production by BALB/c mice and to an increase in the IFN-gamma levels produced by C57BL/6 mice. These results suggest that Y. enterocolitica infection leads to the modulation of M1 macrophages in C57Bl/6 mice, and M2 macrophages in BALB/c mice. The predominant macrophage population (M1 or M2) at the 1st and 3rd day of infection thus seems to be important in determining Y. enterocolitica susceptibility or resistance.


Assuntos
Ativação de Macrófagos/imunologia , Macrófagos Peritoneais/microbiologia , Yersiniose/imunologia , Yersinia enterocolitica/patogenicidade , Animais , Arginase/metabolismo , Citrulina/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/biossíntese , Ornitina/metabolismo , Yersiniose/microbiologia
4.
Immunol Lett ; 94(1-2): 91-8, 2004 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15234540

RESUMO

An essential key to pathogenicity in Yersinia is the presence of a 70 kb plasmid (pYV) which encodes a type-III secretion system and several virulence outer proteins whose main function is to enable the bacteria to survive in the host. Thus, a specific immune response is needed in which cytokines are engaged. The aim of this study was to assess the influence of Yersinia outer proteins (Yops) released by Yersinia pseudotuberculosis on the production of the proinflammatory cytokines, interleukin-12 (IL-12), and tumor necrosis factor alpha (TNF-alpha), and nitric oxide (NO) by murine peritoneal macrophages. To this end, female Swiss mice were infected intravenously with wild-type Y. pseudotuberculosis or with mutant strains unable to secrete specific Yops (YopE, YopH, YopJ, YopM, and YpkA). On the 7th, 14th, 21st, and 28th days after infection, the animals were sacrificed and the cytokines and NO were assayed in the peritoneal macrophages culture supernatants. A fall in NO production was observed during the course of infection with all the strains tested, though during the infection with the strains that did not secrete YopE and YopH, the suppression occurred later. There was, in general, an unchanged or sometimes increased production of TNF-alpha between the 7th and the 21st day after infection, compared to the control group, followed by an abrupt decrease on the last day of infection. The IL-12 production was also suppressed during the infection, with most of the strains tested, except with those that did not secrete YopJ and YopE. The results suggest that Yops may suppress IL-12, TNF-alpha, and NO production and that the most important proteins involved in this suppression are YopE and YopH.


Assuntos
Proteínas da Membrana Bacteriana Externa/fisiologia , Citocinas/biossíntese , Macrófagos Peritoneais/imunologia , Óxido Nítrico/biossíntese , Infecções por Yersinia pseudotuberculosis/imunologia , Infecções por Yersinia pseudotuberculosis/microbiologia , Yersinia pseudotuberculosis/patogenicidade , Animais , Proteínas da Membrana Bacteriana Externa/genética , Feminino , Interleucina-12/biossíntese , Macrófagos Peritoneais/química , Macrófagos Peritoneais/microbiologia , Camundongos , Camundongos Endogâmicos , Óxido Nítrico/análise , Fator de Necrose Tumoral alfa/biossíntese , Yersinia pseudotuberculosis/metabolismo , Infecções por Yersinia pseudotuberculosis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA