Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
J Clin Invest ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753433

RESUMO

Cells expressing features of senescence, including upregulation of p21 and p16, appear transiently following tissue injury, yet the properties of these cells or how they contrast with age-induced senescent cells remains unclear. Here, we used skeletal injury as a model and identified the rapid appearance following fracture of p21+ cells expressing senescence markers, mainly as osteochondroprogenitors (OCHs) and neutrophils. Targeted genetic clearance of p21+ cells suppressed senescence-associated signatures within the fracture callus and accelerated fracture healing. By contrast, p21+ cell clearance did not alter bone loss due to aging; conversely, p16+ cell clearance, known to alleviate skeletal aging, did not affect fracture healing. Following fracture, p21+ neutrophils were enriched in signaling pathways known to induce paracrine stromal senescence, while p21+ OCHs were highly enriched in senescence-associated secretory phenotype factors known to impair bone formation. Further analysis revealed an injury-specific stem cell-like OCH subset that was p21+ and highly inflammatory, with a similar inflammatory mesenchymal population (fibro-adipogenic progenitors) evident following muscle injury. Thus, intercommunicating senescent-like neutrophils and mesenchymal progenitor cells were key regulators of tissue repair in bone and potentially across tissues. Moreover, our findings established contextual roles of p21+ vs p16+ senescent/senescent-like cells that may be leveraged for therapeutic opportunities.

2.
bioRxiv ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38370844

RESUMO

Cells expressing features of senescence, including upregulation of p21 and p16, appear transiently following tissue injury, yet the properties of these cells or how they contrast with age-induced senescent cells remains unclear. Here, we used skeletal injury as a model and identified the rapid appearance following fracture of p21+ cells expressing senescence markers, mainly as osteochondroprogenitors (OCHs) and neutrophils. Targeted genetic clearance of p21+ cells suppressed senescence-associated signatures within the fracture callus and accelerated fracture healing. By contrast, p21+ cell clearance did not alter bone loss due to aging; conversely, p16+ cell clearance, known to alleviate skeletal aging, did not affect fracture healing. Following fracture, p21+ neutrophils were enriched in signaling pathways known to induce paracrine stromal senescence, while p21+ OCHs were highly enriched in senescence-associated secretory phenotype factors known to impair bone formation. Further analysis revealed an injury-specific stem cell-like OCH subset that was p21+ and highly inflammatory, with a similar inflammatory mesenchymal population (fibro-adipogenic progenitors) evident following muscle injury. Thus, intercommunicating senescent-like neutrophils and mesenchymal progenitor cells are key regulators of tissue repair in bone and potentially across tissues. Moreover, our findings establish contextual roles of p21+ vs p16+ senescent/senescent-like cells that may be leveraged for therapeutic opportunities.

3.
JCI Insight ; 9(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38051584

RESUMO

Cachexia is a debilitating skeletal muscle wasting condition for which we currently lack effective treatments. In the context of cancer, certain chemotherapeutics cause DNA damage and cellular senescence. Senescent cells exhibit chronic activation of the transcription factor NF-κB, a known mediator of the proinflammatory senescence-associated secretory phenotype (SASP) and skeletal muscle atrophy. Thus, targeting NF-κB represents a logical therapeutic strategy to alleviate unintended consequences of genotoxic drugs. Herein, we show that treatment with the IKK/NF-κB inhibitor SR12343 during a course of chemotherapy reduces markers of cellular senescence and the SASP in liver, skeletal muscle, and circulation and, correspondingly, attenuates features of skeletal muscle pathology. Lastly, we demonstrate that SR12343 mitigates chemotherapy-induced reductions in body weight, lean mass, fat mass, and muscle strength. These findings support senescent cells as a promising druggable target to counteract the SASP and skeletal muscle wasting in the context of chemotherapy.


Assuntos
Antineoplásicos , NF-kappa B , Humanos , NF-kappa B/metabolismo , Transdução de Sinais , Caquexia/induzido quimicamente , Caquexia/tratamento farmacológico , Senoterapia , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/tratamento farmacológico , Antineoplásicos/efeitos adversos
4.
bioRxiv ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38106149

RESUMO

Senescent cells drive age-related tissue dysfunction via the induction of a chronic senescenceassociated secretory phenotype (SASP). The cyclin-dependent kinase inhibitors p21Cip1 and p16Ink4a have long served as markers of cellular senescence. However, their individual roles remain incompletely elucidated. Thus, we conducted a comprehensive examination of multiple single-cell RNA sequencing (scRNA-seq) datasets spanning both murine and human tissues during aging. Our analysis revealed that p21Cip1 and p16Ink4a transcripts demonstrate significant heterogeneity across distinct cell types and tissues, frequently exhibiting a lack of co-expression. Moreover, we identified tissue-specific variations in SASP profiles linked to p21Cip1 or p16Ink4a expression. Our study underscores the extraordinary diversity of cellular senescence and the SASP, emphasizing that these phenomena are inherently cell- and tissue-dependent. However, a few SASP factors consistently contribute to a shared "core" SASP. These findings highlight the need for a more nuanced investigation of senescence across a wide array of biological contexts.

5.
BMJ Open Qual ; 12(4)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37967995

RESUMO

Precise wound classification is essential for surgical site infection risk stratification and appropriate hospital reimbursement. We instituted a multifaceted approach to improve institutional wound class identification including an education and awareness bundle, as well as a formal audit process. Overall, we saw significant improvements in wound class accuracy, interprofessional collaboration and provider compliance.


Assuntos
Ferida Cirúrgica , Humanos , Melhoria de Qualidade , Infecção da Ferida Cirúrgica/prevenção & controle
6.
JBMR Plus ; 7(10): e10797, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37808391

RESUMO

Estrogen regulates bone mass in women and men, but the underlying cellular mechanisms of estrogen action on bone remain unclear. Although both estrogen receptor (ER)α and ERß are expressed in bone cells, ERα is the dominant receptor for skeletal estrogen action. Previous studies using either global or cell-specific ERα deletion provided important insights, but each of these approaches had limitations. Specifically, either high circulating sex steroid levels in global ERα knockout mice or the effects of deletion of ERα during growth and development in constitutive cell-specific knockout mice have made it difficult to clearly define the role of ERα in specific cell types in the adult skeleton. We recently generated and characterized mice with tamoxifen-inducible ERα deletion in osteocytes driven by the 8-kb Dmp1 promoter (ERαΔOcy mice), revealing detrimental effects of osteocyte-specific ERα deletion on trabecular bone volume (-20.1%) and bone formation rate (-18.9%) in female, but not male, mice. Here, we developed and characterized analogous mice with inducible ERα deletion in osteoclasts using the Cathepsin K promoter (ERαΔOcl mice). In a study design identical to that with the previously described ERαΔOcy mice, adult female, but not male, ERαΔOcl mice showed a borderline (-10.2%, p = 0.084) reduction in trabecular bone volume, no change in osteoclast numbers, but a significant increase in serum CTx levels, consistent with increased osteoclast activity. These findings in ERαΔOcl mice differ from previous studies of constitutive osteoclast-specific ERα deletion, which led to clear deficits in trabecular bone and increased osteoclast numbers. Collectively, these data indicate that in adult mice, estrogen action in the osteocyte is likely more important than via the osteoclast and that ERα deletion in osteoclasts from conception onward has more dramatic skeletal effects than inducible osteoclastic ERα deletion in adult mice. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

7.
Nat Commun ; 14(1): 4587, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524694

RESUMO

Senescence drives organismal aging, yet the deep characterization of senescent cells in vivo remains incomplete. Here, we apply mass cytometry by time-of-flight using carefully validated antibodies to analyze senescent cells at single-cell resolution. We use multiple criteria to identify senescent mesenchymal cells that are growth-arrested and resistant to apoptosis. These p16 + Ki67-BCL-2+ cells are highly enriched for senescence-associated secretory phenotype and DNA damage markers, are strongly associated with age, and their percentages are increased in late osteoblasts/osteocytes and CD24high osteolineage cells. Moreover, both late osteoblasts/osteocytes and CD24high osteolineage cells are robustly cleared by genetic and pharmacologic senolytic therapies in aged mice. Following isolation, CD24+ skeletal cells exhibit growth arrest, senescence-associated ß-galactosidase positivity, and impaired osteogenesis in vitro. These studies thus provide an approach using multiplexed protein profiling to define senescent mesenchymal cells in vivo and identify specific skeletal cell populations cleared by senolytics.


Assuntos
Senescência Celular , Senoterapia , Camundongos , Animais , Senescência Celular/genética , Envelhecimento/genética , Osteoblastos , Esqueleto
8.
JBMR Plus ; 7(6): e10745, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37283656

RESUMO

Aging is a major risk factor for most chronic diseases, including osteoporosis, and is characterized by an accumulation of senescent cells in various tissues. MicroRNAs (miRNAs) are critical regulators of bone aging and cellular senescence. Here, we report that miR-19a-3p decreases with age in bone samples from mice as well as in posterior iliac crest bone biopsies of younger versus older healthy women. miR-19a-3p also decreased in mouse bone marrow stromal cells following induction of senescence using etoposide, H2O2, or serial passaging. To explore the transcriptomic effects of miR-19a-3p, we performed RNA sequencing of mouse calvarial osteoblasts transfected with control or miR-19a-3p mimics and found that miR-19a-3p overexpression significantly altered the expression of various senescence, senescence-associated secretory phenotype-related, and proliferation genes. Specifically, miR-19a-3p overexpression in nonsenescent osteoblasts significantly suppressed p16 Ink4a and p21 Cip1 gene expression and increased their proliferative capacity. Finally, we established a novel senotherapeutic role for this miRNA by treating miR-19a-3p expressing cells with H2O2 to induce senescence. Interestingly, these cells exhibited lower p16 Ink4a and p21 Cip1 expression, increased proliferation-related gene expression, and reduced SA-ß-Gal+ cells. Our results thus establish that miR-19a-3p is a senescence-associated miRNA that decreases with age in mouse and human bones and is a potential senotherapeutic target for age-related bone loss. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

9.
Mol Ther Nucleic Acids ; 33: 28-41, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37359348

RESUMO

Estrogen signaling is critical for the development and maintenance of healthy bone, and age-related decline in estrogen levels contributes to the development of post-menopausal osteoporosis. Most bones consist of a dense cortical shell and an internal mesh-like network of trabecular bone that respond differently to internal and external cues such as hormonal signaling. To date, no study has assessed the transcriptomic differences that occur specifically in cortical and trabecular bone compartments in response to hormonal changes. To investigate this, we employed a mouse model of post-menopausal osteoporosis (ovariectomy, OVX) and estrogen replacement therapy (ERT). mRNA and miR sequencing revealed distinct transcriptomic profiles between cortical and trabecular bone in the setting of OVX and ERT. Seven miRs were identified as likely contributors to the observed estrogen-mediated mRNA expression changes. Of these, four miRs were prioritized for further study and decreased predicted target gene expression in bone cells, enhanced the expression of osteoblast differentiation markers, and altered the mineralization capacity of primary osteoblasts. As such, candidate miRs and miR mimics may have therapeutic relevance for bone loss resulting from estrogen depletion without the unwanted side effects of hormone replacement therapy and therefore represent novel therapeutic approaches to combat diseases of bone loss.

10.
Aging (Albany NY) ; 15(9): 3331-3355, 2023 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-37154858

RESUMO

In addition to reducing fracture risk, zoledronic acid has been found in some studies to decrease mortality in humans and extend lifespan and healthspan in animals. Because senescent cells accumulate with aging and contribute to multiple co-morbidities, the non-skeletal actions of zoledronic acid could be due to senolytic (killing of senescent cells) or senomorphic (inhibition of the secretion of the senescence-associated secretory phenotype [SASP]) actions. To test this, we first performed in vitro senescence assays using human lung fibroblasts and DNA repair-deficient mouse embryonic fibroblasts, which demonstrated that zoledronic acid killed senescent cells with minimal effects on non-senescent cells. Next, in aged mice treated with zoledronic acid or vehicle for 8 weeks, zoledronic acid significantly reduced circulating SASP factors, including CCL7, IL-1ß, TNFRSF1A, and TGFß1 and improved grip strength. Analysis of publicly available RNAseq data from CD115+ (CSF1R/c-fms+) pre-osteoclastic cells isolated from mice treated with zoledronic acid demonstrated a significant downregulation of senescence/SASP genes (SenMayo). To establish that these cells are potential senolytic/senomorphic targets of zoledronic acid, we used single cell proteomic analysis (cytometry by time of flight [CyTOF]) and demonstrated that zoledronic acid significantly reduced the number of pre-osteoclastic (CD115+/CD3e-/Ly6G-/CD45R-) cells and decreased protein levels of p16, p21, and SASP markers in these cells without affecting other immune cell populations. Collectively, our findings demonstrate that zoledronic acid has senolytic effects in vitro and modulates senescence/SASP biomarkers in vivo. These data point to the need for additional studies testing zoledronic acid and/or other bisphosphonate derivatives for senotherapeutic efficacy.


Assuntos
Senescência Celular , Fenótipo Secretor Associado à Senescência , Humanos , Animais , Camundongos , Senescência Celular/fisiologia , Ácido Zoledrônico/farmacologia , Ácido Zoledrônico/metabolismo , Senoterapia , Proteômica , Fibroblastos/metabolismo
11.
bioRxiv ; 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36865244

RESUMO

In addition to reducing fracture risk, zoledronate has been found in some studies to decrease mortality in humans and extend lifespan and healthspan in animals. Because senescent cells accumulate with aging and contribute to multiple co-morbidities, the non-skeletal actions of zoledronate could be due to senolytic (killing of senescent cells) or senomorphic (inhibition of the secretion of the senescence-associated secretory phenotype [SASP]) actions. To test this, we first performed in vitro senescence assays using human lung fibroblasts and DNA repair-deficient mouse embryonic fibroblasts, which demonstrated that zoledronate killed senescent cells with minimal effects on non-senescent cells. Next, in aged mice treated with zoledronate or vehicle for 8 weeks, zoledronate significantly reduced circulating SASP factors, including CCL7, IL-1ß, TNFRSF1A, and TGFß1 and improved grip strength. Analysis of publicly available RNAseq data from CD115+ (CSF1R/c-fms+) pre-osteoclastic cells isolated from mice treated with zoledronate demonstrated a significant downregulation of senescence/SASP genes (SenMayo). To establish that these cells are potential senolytic/senomorphic targets of zoledronate, we used single cell proteomic analysis (cytometry by time of flight [CyTOF]) and demonstrated that zoledronate significantly reduced the number of pre-osteoclastic (CD115+/CD3e-/Ly6G-/CD45R-) cells and decreased protein levels of p16, p21, and SASP markers in these cells without affecting other immune cell populations. Collectively, our findings demonstrate that zoledronate has senolytic effects in vitro and modulates senescence/SASP biomarkers in vivo . These data point to the need for additional studies testing zoledronate and/or other bisphosphonate derivatives for senotherapeutic efficacy.

12.
J Clin Invest ; 133(8)2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36809340

RESUMO

Clearance of senescent cells (SnCs) can prevent several age-related pathologies, including bone loss. However, the local versus systemic roles of SnCs in mediating tissue dysfunction remain unclear. Thus, we developed a mouse model (p16-LOX-ATTAC) that allowed for inducible SnC elimination (senolysis) in a cell-specific manner and compared the effects of local versus systemic senolysis during aging using bone as a prototype tissue. Specific removal of Sn osteocytes prevented age-related bone loss at the spine, but not the femur, by improving bone formation without affecting osteoclasts or marrow adipocytes. By contrast, systemic senolysis prevented bone loss at the spine and femur and not only improved bone formation, but also reduced osteoclast and marrow adipocyte numbers. Transplantation of SnCs into the peritoneal cavity of young mice caused bone loss and also induced senescence in distant host osteocytes. Collectively, our findings provide proof-of-concept evidence that local senolysis has health benefits in the context of aging, but, importantly, that local senolysis only partially replicates the benefits of systemic senolysis. Furthermore, we establish that SnCs, through their senescence-associated secretory phenotype (SASP), lead to senescence in distant cells. Therefore, our study indicates that optimizing senolytic drugs may require systemic instead of local SnC targeting to extend healthy aging.


Assuntos
Envelhecimento , Senescência Celular , Camundongos , Animais , Senescência Celular/genética , Osso e Ossos , Osteoclastos , Osteócitos
13.
bioRxiv ; 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36711531

RESUMO

Senescence drives organismal aging, yet the deep characterization of senescent cells in vivo remains incomplete. Here, we applied mass cytometry by time-of-flight (CyTOF) using carefully validated antibodies to analyze senescent cells at single-cell resolution. We used multiple criteria to identify senescent mesenchymal cells that were growth arrested and resistant to apoptosis (p16+/Ki67-/BCL-2+; "p16KB" cells). These cells were highly enriched for senescence-associated secretory phenotype (SASP) and DNA damage markers and were strongly associated with age. p16KB cell percentages were also increased in CD24+ osteolineage cells, which exhibited an inflammatory SASP in aged mice and were robustly cleared by both genetic and pharmacologic senolytic therapies. Following isolation, CD24+ skeletal cells exhibited growth arrest, SA-ßgal positivity, and impaired osteogenesis in vitro . These studies thus provide a new approach using multiplexed protein profiling by CyTOF to define senescent mesenchymal cells in vivo and identify a highly inflammatory, senescent CD24+ osteolineage population cleared by senolytics.

14.
Nat Commun ; 13(1): 4827, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974106

RESUMO

Although cellular senescence drives multiple age-related co-morbidities through the senescence-associated secretory phenotype, in vivo senescent cell identification remains challenging. Here, we generate a gene set (SenMayo) and validate its enrichment in bone biopsies from two aged human cohorts. We further demonstrate reductions in SenMayo in bone following genetic clearance of senescent cells in mice and in adipose tissue from humans following pharmacological senescent cell clearance. We next use SenMayo to identify senescent hematopoietic or mesenchymal cells at the single cell level from human and murine bone marrow/bone scRNA-seq data. Thus, SenMayo identifies senescent cells across tissues and species with high fidelity. Using this senescence panel, we are able to characterize senescent cells at the single cell level and identify key intercellular signaling pathways. SenMayo also represents a potentially clinically applicable panel for monitoring senescent cell burden with aging and other conditions as well as in studies of senolytic drugs.


Assuntos
Senescência Celular , Células-Tronco Mesenquimais , Tecido Adiposo , Idoso , Envelhecimento/metabolismo , Animais , Osso e Ossos , Senescência Celular/genética , Humanos , Camundongos
15.
J Bone Miner Res ; 37(9): 1750-1760, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35789113

RESUMO

Estrogen is known to regulate bone metabolism in both women and men, but substantial gaps remain in our knowledge of estrogen and estrogen receptor alpha (ERα) regulation of adult bone metabolism. Studies using global ERα-knockout mice were confounded by high circulating sex-steroid levels, and osteocyte/osteoblast-specific ERα deletion may be confounded by ERα effects on growth versus the adult skeleton. Thus, we developed mice expressing the tamoxifen-inducible CreERT2 in osteocytes using the 8-kilobase (kb) Dmp1 promoter (Dmp1CreERT2 ). These mice were crossed with ERαfl//fl mice to create ERαΔOcy mice, permitting inducible osteocyte-specific ERα deletion in adulthood. After intermittent tamoxifen treatment of adult 4-month-old mice for 1 month, female, but not male, ERαΔOcy mice exhibited reduced spine bone volume fraction (BV/TV (-20.1%, p = 0.004) accompanied by decreased trabecular bone formation rate (-18.9%, p = 0.0496) and serum P1NP levels (-38.9%, p = 0.014). Periosteal (+65.6%, p = 0.004) and endocortical (+64.1%, p = 0.003) expansion were higher in ERαΔOcy mice compared to control (Dmp1CreERT2 ) mice at the tibial diaphysis, reflecting the known effects of estrogen to inhibit periosteal apposition and promote endocortical formation. Increases in Sost (2.1-fold, p = 0.001) messenger RNA (mRNA) levels were observed in trabecular bone at the spine in ERαΔOcy mice, consistent with previous reports that estrogen deficiency is associated with increased circulating sclerostin as well as bone SOST mRNA levels in humans. Further, the biological consequences of increased Sost expression were reflected in significant overall downregulation in panels of osteoblast and Wnt target genes in osteocyte-enriched bones from ERαΔOcy mice. These findings thus establish that osteocytic ERα is critical for estrogen action in female, but not male, adult bone metabolism. Moreover, the reduction in bone formation accompanied by increased Sost, decreased osteoblast, and decreased Wnt target gene expression in ERαΔOcy mice provides a direct link in vivo between ERα and Wnt signaling. © 2022 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Receptor alfa de Estrogênio , Osteócitos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Animais , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Estrogênios/farmacologia , Feminino , Humanos , Lactente , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos Knockout , Osteoblastos/metabolismo , Osteócitos/metabolismo , RNA Mensageiro/metabolismo , Tamoxifeno/farmacologia
16.
Gene ; 835: 146642, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35700807

RESUMO

MicroRNAs (miRNAs) are promising tools as biomarkers and therapeutic agents in various chronic diseases such as osteoporosis, cancers, type I and II diabetes, and cardiovascular diseases. Considering the rising interest in the regulatory role of miRNAs in bone metabolism, aging, and cellular senescence, accurate normalization of qPCR-based miRNA expression data using an optimal endogenous control becomes crucial. We used a systematic approach to select candidate endogenous control miRNAs that exhibit high stability with aging from our miRNA sequence data and literature search. Validation of miRNA expression was performed using qPCR and their comprehensive stability was assessed using the RefFinder tool which is based on four statistical algorithms: GeNorm, NormFinder, BestKeeper, and comparative delta CT. The selected endogenous control was then validated for its stability in mice and human bone tissues, and in bone marrow stromal cells (BMSCs) following induction of senescence and senolytic treatment. Finally, the utility of selected endogenous control versus U6 was tested by using each as a normalizer to measure the expression of miR-34a, a miRNA known to increase with age and senescence. Our results show that Let-7f did not change across the groups with aging, senescence or senolytic treatment, and was the most stable miRNA, whereas U6 was the least stable. Moreover, using Let-7f as a normalizer resulted in significantly increased expression of miR-34a with aging and senescence and decreased expression following senolytic treatment. However, the expression pattern for miR-34a reversed for each of these conditions when U6 was used as a normalizer. We show that optimal endogenous control miRNAs, such as Let-7f, are essential for accurate normalization of miRNA expression data to increase the reliability of results and prevent misinterpretation. Moreover, we present a systematic strategy that is transferrable and can easily be used to identify endogenous control miRNAs in other biological systems and conditions.


Assuntos
MicroRNAs , Animais , Osso e Ossos/metabolismo , Senescência Celular/genética , Perfilação da Expressão Gênica , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Reprodutibilidade dos Testes , Senoterapia
17.
Aging Cell ; 21(5): e13602, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35363946

RESUMO

Cellular senescence, which is a major cause of tissue dysfunction with aging and multiple other conditions, is known to be triggered by p16Ink4a or p21Cip1 , but the relative contributions of each pathway toward inducing senescence are unclear. Here, we directly addressed this issue by first developing and validating a p21-ATTAC mouse with the p21Cip1 promoter driving a "suicide" transgene encoding an inducible caspase-8 which, upon induction, selectively kills p21Cip1 -expressing senescent cells. Next, we used the p21-ATTAC mouse and the established p16-INK-ATTAC mouse to directly compare the contributions of p21Cip1 versus p16Ink4a in driving cellular senescence in a condition where a tissue phenotype (bone loss and increased marrow adiposity) is clearly driven by cellular senescence-specifically, radiation-induced osteoporosis. Using RNA in situ hybridization, we confirmed the reduction in radiation-induced p21Cip1 - or p16Ink4a -driven transcripts following senescent cell clearance in both models. However, only clearance of p21Cip1 +, but not p16Ink4a +, senescent cells prevented both radiation-induced osteoporosis and increased marrow adiposity. Reduction in senescent cells with dysfunctional telomeres following clearance of p21Cip1 +, but not p16Ink4a +, senescent cells also reduced several of the radiation-induced pro-inflammatory senescence-associated secretory phenotype factors. Thus, by directly comparing senescent cell clearance using two parallel genetic models, we demonstrate that radiation-induced osteoporosis is driven predominantly by p21Cip1 - rather than p16Ink4a -mediated cellular senescence. Further, this approach can be used to dissect the contributions of these pathways in other senescence-associated conditions, including aging across tissues.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina , Osteoporose , Adiposidade , Animais , Medula Óssea/metabolismo , Senescência Celular/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Camundongos , Obesidade , Osteoporose/genética
18.
J Bone Miner Res ; 37(5): 997-1011, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35247283

RESUMO

Oxidative stress-induced reactive oxygen species, DNA damage, apoptosis, and cellular senescence have been associated with reduced osteoprogenitors in a reciprocal fashion to bone marrow adipocyte tissue (BMAT); however, a direct (causal) link between cellular senescence and BMAT is still elusive. Accumulation of senescent cells occur in naturally aged and in focally radiated bone tissue, but despite amelioration of age- and radiation-associated bone loss after senescent cell clearance, molecular events that precede BMAT accrual are largely unknown. Here we show by RNA-Sequencing data that BMAT-related genes were the most upregulated gene subset in radiated bones of C57BL/6 mice. Using focal radiation as a model to understand age-associated changes in bone, we performed a longitudinal assessment of cellular senescence and BMAT. Using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), RNA in situ hybridization of p21 transcripts and histological assessment of telomere dysfunction as a marker of senescence, we observed an increase in senescent cell burden of bone cells from day 1 postradiation, without the presence of BMAT. BMAT was significantly elevated in radiated bones at day 7, confirming the qRT-PCR data in which most BMAT-related genes were elevated by day 7, and the trend continued until day 42 postradiation. Similarly, elevation in BMAT-related genes was observed in bones of aged mice. The senolytic cocktail of Dasatinib (D) plus Quercetin (Q) (ie, D + Q), which clears senescent cells, reduced BMAT in aged and radiated bones. MicroRNAs (miRNAs or miRs) linked with senescence marker p21 were downregulated in radiated and aged bones, whereas miR-27a, a miR that is associated with increased BMAT, was elevated both in radiated and aged bones. D + Q downregulated miR-27a in radiated bones at 42 days postradiation. Overall, our study provides evidence that BMAT occurrence in oxidatively stressed bone environments, such as radiation and aging, is induced following a common pathway and is dependent on the presence of senescent cells. © 2022 American Society for Bone and Mineral Research (ASBMR).


Assuntos
MicroRNAs , Osteoporose , Adiposidade , Envelhecimento , Animais , Biomarcadores , Medula Óssea , Senescência Celular , Camundongos , Camundongos Endogâmicos C57BL , Obesidade
19.
J Clin Invest ; 132(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35104801

RESUMO

Cellular senescence is a fundamental aging mechanism that is currently the focus of considerable interest as a pathway that could be targeted to ameliorate aging across multiple tissues, including the skeleton. There is now substantial evidence that senescent cells accumulate in the bone microenvironment with aging and that targeting these cells prevents age-related bone loss, at least in mice. Cellular senescence also plays important roles in mediating the skeletal fragility associated with diabetes mellitus, radiation, and chemotherapy. As such, there are ongoing efforts to develop "senolytic" drugs that kill senescent cells by targeting key survival mechanisms in these cells without affecting normal cells. Because senescent cells accumulate across tissues with aging, senolytics offer the attractive possibility of treating multiple age-related comorbidities simultaneously.


Assuntos
Envelhecimento/metabolismo , Osso e Ossos , Senescência Celular , Osteoporose , Animais , Osso e Ossos/metabolismo , Osso e Ossos/fisiopatologia , Humanos , Camundongos , Osteoporose/metabolismo , Osteoporose/fisiopatologia
20.
Pediatr Emerg Care ; 38(1): e105-e110, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32925174

RESUMO

BACKGROUND: Many children seeking emergency care at community hospitals require transport to tertiary centers for definitive management. Interhospital transport via ambulance versus patient's own vehicle (POV) are 2 possible modes of transport; however, presence of a peripheral venous catheter (PIV) can determine transport by ambulance. Caregiver satisfaction, patient comfort, and PIV complications related to POV transport have not been described. OBJECTIVE: The aims of the study were to examine caregivers' satisfaction and perceptions of POV transport in children with/without PIVs and to assess PIV-related complications during transport. METHODS: We performed a mixed-methods, prospective cohort study of children who presented with low-acuity conditions to a community hospital and subsequently required transfer to a pediatric tertiary center. Caregivers of patients with/without PIVs were given the choice of transport by POV or ambulance. Surveys completed after transport used dichotomous, 5-point Likert scale, and open-ended responses to assess satisfaction, perceptions, and PIV-related complications. Responses were quantitatively and qualitatively analyzed accordingly. The receiving hospital assessed PIV integrity. RESULTS: Sixty-nine of 78 eligible patients were enrolled; of those, 67 (97%) elected transport by POV and 55 (82%) completed surveys. Most caregivers had positive responses related to satisfaction, comfort, and safety. Results did not differ significantly between those with/without PIVs. The majority (96%) would choose POV transport again. There were no reported PIV complications; all PIVs were functional upon arrival. Qualitative analysis identified themes of comfort, convenience, and efficiency. CONCLUSIONS: In select scenarios, interfacility transport by POV is preferred by families and doing so with a saline-locked PIV does not result in complications.


Assuntos
Cateterismo Periférico , Serviços Médicos de Emergência , Catéteres , Criança , Humanos , Estudos Prospectivos , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA