Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(7)2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-37048068

RESUMO

Leptomeningeal disease occurs when cancer cells migrate into the ventricles of the brain and spinal cord and then colonize the meninges of the central nervous system. The triple-negative subtype of breast cancer often progresses toward leptomeningeal disease and has a poor prognosis because of limited treatment options. This is due, in part, to a lack of animal models with which to study leptomeningeal disease. Here, we developed a translucent zebrafish casper (roy-/-; nacre-/-) xenograft model of leptomeningeal disease in which fluorescent labeled MDA-MB-231 human triple-negative breast cancer cells are microinjected into the ventricles of zebrafish embryos and then tracked and measured using fluorescent microscopy and multimodal plate reader technology. We then used these techniques to measure tumor area, cell proliferation, and cell death in samples treated with the breast cancer drug doxorubicin and a vehicle control. We monitored MDA-MB-231 cell localization and tumor area, and showed that samples treated with doxorubicin exhibited decreased tumor area and proliferation and increased apoptosis compared to control samples.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Peixe-Zebra , Apoptose , Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico
2.
Cancer Metab ; 10(1): 7, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379333

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is the predominant form of liver cancer and is accompanied by complex dysregulation of lipids. Increasing evidence suggests that particular lipid species are associated with HCC progression. Here, we aimed to identify lipid biomarkers of HCC associated with the induction of two oncogenes, xmrk, a zebrafish homolog of the human epidermal growth factor receptor (EGFR), and Myc, a regulator of EGFR expression during HCC. METHODS: We induced HCC in transgenic xmrk, Myc, and xmrk/Myc zebrafish models. Liver specimens were histologically analyzed to characterize the HCC stage, Oil-Red-O stained to detect lipids, and liquid chromatography/mass spectrometry analyzed to assign and quantify lipid species. Quantitative real-time polymerase chain reaction was used to measure lipid metabolic gene expression in liver samples. Lipid species data was analyzed using univariate and multivariate logistic modeling to correlate lipid class levels with HCC progression. RESULTS: We found that induction of xmrk, Myc and xmrk/Myc caused different stages of HCC. Lipid deposition and class levels generally increased during tumor progression, but triglyceride levels decreased. Myc appears to control early HCC stage lipid species levels in double transgenics, whereas xmrk may take over this role in later stages. Lipid metabolic gene expression can be regulated by either xmrk, Myc, or both oncogenes. Our computational models showed that variations in total levels of several lipid classes are associated with HCC progression. CONCLUSIONS: These data indicate that xmrk and Myc can temporally regulate lipid species that may serve as effective biomarkers of HCC progression.

3.
Cells ; 10(5)2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067095

RESUMO

Studies conducted in several fish species, e.g., Xiphophorus hellerii (green swordtail) and Xiphophorus maculatus (southern platyfish) crosses, Oryzias latipes (medaka), and Danio rerio (zebrafish), have identified an oncogenic role for the receptor tyrosine kinase, Xmrk, a gene product closely related to the human epidermal growth factor receptor (EGFR), which is associated with a wide variety of pathological conditions, including cancer. Comparative analyses of Xmrk and EGFR signal transduction in melanoma have shown that both utilize STAT5 signaling to regulate apoptosis and cell proliferation, PI3K to modulate apoptosis, FAK to control migration, and the Ras/Raf/MEK/MAPK pathway to regulate cell survival, proliferation, and differentiation. Further, Xmrk and EGFR may also modulate similar chemokine, extracellular matrix, oxidative stress, and microRNA signaling pathways in melanoma. In hepatocellular carcinoma (HCC), Xmrk and EGFR signaling utilize STAT5 to regulate cell proliferation, and Xmrk may signal through PI3K and FasR to modulate apoptosis. At the same time, both activate the Ras/Raf/MEK/MAPK pathway to regulate cell proliferation and E-cadherin signaling. Xmrk models of melanoma have shown that inhibitors of PI3K and MEK have an anti-cancer effect, and in HCC, that the steroidal drug, adrenosterone, can prevent metastasis and recover E-cadherin expression, suggesting that fish Xmrk models can exploit similarities with EGFR signal transduction to identify and study new chemotherapeutic drugs.


Assuntos
Receptores ErbB/metabolismo , Neoplasias/patologia , Oncogenes , Proteínas de Peixe-Zebra/metabolismo , Animais , Receptores ErbB/genética , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
4.
Sci Rep ; 11(1): 10408, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001990

RESUMO

The monofunctional platinum(II) complex, phenanthriplatin, acts by blocking transcription, but its regulatory effects on long-noncoding RNAs (lncRNAs) have not been elucidated relative to traditional platinum-based chemotherapeutics, e.g., cisplatin. Here, we treated A549 non-small cell lung cancer and IMR90 lung fibroblast cells for 24 h with either cisplatin, phenanthriplatin or a solvent control, and then performed microarray analysis to identify regulated lncRNAs. RNA22 v2 microRNA software was subsequently used to identify microRNAs (miRNAs) that might be suppressed by the most regulated lncRNAs. We found that miR-25-5p, -30a-3p, -138-5p, -149-3p, -185-5p, -378j, -608, -650, -708-5p, -1253, -1254, -4458, and -4516, were predicted to target the cisplatin upregulated lncRNAs, IMMP2L-1, CBR3-1 and ATAD2B-5, and the phenanthriplatin downregulated lncRNAs, AGO2-1, COX7A1-2 and SLC26A3-1. Then, we used qRT-PCR to measure the expression of miR-25-5p, -378j, -4516 (A549) and miR-149-3p, -608, and -4458 (IMR90) to identify distinct signaling effects associated with cisplatin and phenanthriplatin. The signaling pathways associated with these miRNAs suggests that phenanthriplatin may modulate Wnt/ß-catenin and TGF-ß signaling through the MAPK/ERK and PTEN/AKT pathways differently than cisplatin. Further, as some of these miRNAs may be subject to dissimilar lncRNA targeting in A549 and IMR90 cells, the monofunctional complex may not cause toxicity in normal lung compared to cancer cells by acting through distinct lncRNA and miRNA networks.


Assuntos
Cisplatino/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Compostos Organoplatínicos/farmacologia , Fenantridinas/farmacologia , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Cisplatino/uso terapêutico , Regulação para Baixo/efeitos dos fármacos , Fibroblastos , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo , Compostos Organoplatínicos/uso terapêutico , Fenantridinas/uso terapêutico , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética , beta Catenina/metabolismo
5.
Neurotox Res ; 39(1): 36-41, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32221851

RESUMO

Cisplatin is a platinum-based chemotherapy compound effective against a variety of cancers. However, it can cause increased reactive oxygen species (ROS) production in auditory and vestibular tissue leading to permanent hearing and balance loss. The amino acid, L-serine, has been shown to reduce ROS in some tissue types. In this project, we first investigated whether L-serine could reduce cisplatin-mediated ROS generation in zebrafish utricular tissue culture using spectrophotometry and the fluorescent ROS detector dye, H2DCFDA. Then, we examined whether L-serine could prevent the effect of cisplatin against cellular viability in the mouse auditory hybridoma cell line, HEI-OC1, using the spectrophotometric (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay. As a final step, we used H2DCFDA dye and flow cytometry analysis to determine if L-serine could counteract the effect of cisplatin on ROS production in this cell line. We found that cisplatin and L-serine treatment may influence ROS production in utricular tissue. Further, although L-serine did not counteract the effect of cisplatin against HEI-OC1 cellular viability, the amino acid did prevent the platinum compound's effect to increase ROS in these cells. These results suggest that L-serine may act in auditory and vestibular tissues as an effective protectant against cisplatin-mediated toxicity.


Assuntos
Cisplatino/toxicidade , Hibridomas/efeitos dos fármacos , Hibridomas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sáculo e Utrículo/efeitos dos fármacos , Sáculo e Utrículo/metabolismo , Serina/administração & dosagem , Animais , Linhagem Celular Tumoral , Feminino , Masculino , Técnicas de Cultura de Tecidos , Peixe-Zebra
6.
Cells ; 9(12)2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302475

RESUMO

Phenanthriplatin is a new monofunctional platinum(II) complex that binds only one strand of DNA and acts by blocking gene transcription, but its effect on gene regulation has not been characterized relative to the traditional platinum-based complex, cisplatin. A549 non-small cell lung cancer and IMR90 lung fibroblast cells were treated with cisplatin, phenanthriplatin, or a control and then their RNA transcripts were subjected to next generation sequencing analysis. DESeq2 and CuffDiff2 were used to identify up- and downregulated genes and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases were used to identify pathways and functions. We found that phenanthriplatin may regulate the genes GPRC5a, TFF1, and TNFRSF10D, which act through p53 to control apoptosis, differently or to a greater extent than cisplatin, and that it, unlike cisplatin, could upregulate ATP5MD, a gene which signals through the Wnt/ß catenin pathway. Furthermore, phenanthriplatin caused unique or enhanced effects compared to cisplatin on genes regulating the cytoskeleton, cell migration, and proliferation, e.g., AGAP1, DIAPH2, GDF15, and THSD1 (p < 0.05; q < 0.05). Phenanthriplatin may modulate some oncogenes differently than cisplatin potentially leading to improved clinical outcome, but this monofunctional complex should be carefully matched with cancer gene data to be successfully applied in chemotherapy.


Assuntos
Cisplatino/farmacologia , Fibroblastos/efeitos dos fármacos , Compostos Organoplatínicos/farmacologia , Fenantridinas/farmacologia , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Regulação para Baixo/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Pulmão/citologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Platina/química , Análise de Sequência de RNA , Regulação para Cima/efeitos dos fármacos
7.
Neurotoxicology ; 79: 104-109, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32413439

RESUMO

Cisplatin is a platinum(II) chemotherapy drug that can cause the side-effect of ototoxicity and hearing loss. The monofunctional platinum(II) complexes, phenanthriplatin and pyriplatin, have recently been investigated as anti-cancer agents but their side-effects are largely unknown. Here, we used the auditory hybridoma cell line, HEI-OC1, to investigate the ototoxicity of cisplatin, phenanthriplatin and pyriplatin. The effect of these compounds against cellular viability, on reactive oxygen species (ROS) production, mitochondrial membrane polarization, caspase-3/7 activity, DNA integrity and caspase-12 expression were measured using spectrophotometric, flow cytometric and blot analyses. We found that the monofunctional complexes and cisplatin decreased cellular viability. All three compounds increased ROS yield at 24 h, but at 48 h, ROS levels returned to normal. Also, the compounds did not depolarize the mitochondrial membrane. All three compounds reduced caspase-3/7 activity at 24 h; cisplatin increased caspase-3/7 activity and caused apoptosis at 48 h. Caspase-12 expression was associated with all three compounds. In summary, the monofunctional complexes may cause ototoxicity like cisplatin. Phenanthriplatin and pyriplatin may cause ototoxicity initially by inducing ROS production, but they may also signal through distinct apoptotic pathways that do not integrate caspases-3/7, or may act at different time-points in the same pathways.


Assuntos
Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Cóclea/efeitos dos fármacos , Compostos Organoplatínicos/toxicidade , Fenantridinas/toxicidade , Animais , Caspase 12/metabolismo , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular , Cóclea/metabolismo , Cóclea/patologia , Hibridomas , Camundongos , Ototoxicidade , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
8.
Molecules ; 24(21)2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671767

RESUMO

In this study, we investigated whether the curcuminoids, CLEFMA and EF24, improved cisplatin efficacy and reduced cisplatin ototoxicity. We used the lung cancer cell line, A549, to determine the effects of the curcuminoids and cisplatin on cell viability and several apoptotic signaling mechanisms. Cellular viability was measured using the MTT assay. A scratch assay was used to measure cell migration and fluorescent spectrophotometry to measure reactive oxygen species (ROS) production. Western blots and luminescence assays were used to measure the expression and activity of apoptosis-inducing factor (AIF), caspases-3/7, -8, -9, and -12, c-Jun N-terminal kinases (JNK), mitogen-activated protein kinase (MAPK), and proto-oncogene tyrosine-protein kinase (Src). A zebrafish model was used to evaluate auditory effects. Cisplatin, the curcuminoids, and their combinations had similar effects on cell viability (IC50 values: 2-16 µM) and AIF, caspase-12, JNK, MAPK, and Src expression, while caspase-3/7, -8, and -9 activity was unchanged or decreased. Cisplatin increased ROS yield (1.2-fold), and curcuminoid and combination treatments reduced ROS (0.75-0.85-fold). Combination treatments reduced A549 migration (0.51-0.53-fold). Both curcuminoids reduced auditory threshold shifts induced by cisplatin. In summary, cisplatin and the curcuminoids might cause cell death through AIF and caspase-12. The curcuminoids may potentiate cisplatin's effect against A549 migration, but may counteract cisplatin's effect to increase ROS production. The curcuminoids might also prevent cisplatin ototoxicity.


Assuntos
Antineoplásicos/uso terapêutico , Compostos de Benzilideno/uso terapêutico , Cisplatino/efeitos adversos , Diarileptanoides/uso terapêutico , Ototoxicidade/tratamento farmacológico , Piperidonas/uso terapêutico , Células A549 , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Compostos de Benzilideno/química , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Cisplatino/química , Diarileptanoides/química , Diarileptanoides/farmacologia , Potenciais Evocados Auditivos/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Ototoxicidade/fisiopatologia , Piperidonas/química , Proto-Oncogene Mas , Peixe-Zebra
9.
Photochem Photobiol ; 95(6): 1473-1481, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31230353

RESUMO

Photodynamic therapy (PDT) is a field with many applications including chemotherapy. Graphene quantum dots (GQDs) exhibit a variety of unique properties and can be used in PDT to generate singlet oxygen that destroys pathogenic bacteria and cancer cells. The PDT agent, methylene blue (MB), like GQDs, has been successfully exploited to destroy bacteria and cancer cells by increasing reactive oxygen species generation. Recently, combinations of GQDs and MB have been shown to destroy pathogenic bacteria via increased singlet oxygen generation. Here, we performed a spectrophotometric assay to detect and measure the uptake of GQDs, MB and several GQD-MB combinations in MCF-7 breast cancer cells. Then, we used a cell counting method to evaluate the cytotoxicity of GQDs, MB and a 1:1 GQD:MB preparation. Singlet oxygen generation in cells was then detected and measured using singlet oxygen sensor green. The dye, H2 DCFDA, was used to measure reactive oxygen species production. We found that GQD and MB uptake into MCF-7 cells occurred, but that MB, followed by 1:1 GQD:MB, caused superior cytotoxicity and singlet oxygen and reactive oxygen species generation. Our results suggest that methylene blue's effect against MCF-7 cells is not potentiated by GQDs, either in light or dark conditions.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/radioterapia , Grafite/química , Fotoquimioterapia/métodos , Pontos Quânticos/química , Enxofre/química , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Feminino , Humanos , Células MCF-7 , Azul de Metileno/química , Azul de Metileno/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Espectrometria de Fluorescência
10.
J Clin Neurosci ; 57: 152-156, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30243600

RESUMO

Cisplatin is a widely used chemotherapy drug that can damage auditory and vestibular tissue and cause hearing and balance loss through the intracellular release of reactive oxygen species (ROS). Curcumin has anticancer efficacy and can also counteract cisplatin's damaging effect against sensory tissue by scavenging intracellular ROS, but curcumin's applicability is limited due to its low bioavailability. EF-24 is a synthetic curcumin analog that is more bioavailable than curcumin and can target cancer, but its effects against cisplatin-mediated ROS in auditory and vestibular tissue is currently unknown. In this study, we employed a novel zebrafish inner ear tissue culture system to determine if EF-24 counteracted cisplatin-mediated ROS release in two sensory endorgans, the saccule and the utricle. The zebrafish saccule is associated with auditory function and the utricle with vestibular function. Trimmed endorgans were placed in tissue culture media with a fluorescent reactive oxygen species indicator dye, and intracellular ROS release was measured using a spectrophotometer. We found that cisplatin treatment significantly increased ROS compared to controls, but that EF-24 treatment did not alter or even decreased ROS. Importantly, when equimolar cisplatin and EF-24 treatments are combined, ROS did not increase compared to controls. This suggests that EF-24 may be able to prevent intracellular ROS caused by cisplatin treatment in inner ear tissue.


Assuntos
Antineoplásicos/farmacologia , Compostos de Benzilideno/farmacologia , Cisplatino/farmacologia , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Vestibulares/efeitos dos fármacos , Piperidonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Antagonismo de Drogas , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Vestibulares/metabolismo , Peixe-Zebra
11.
Photodiagnosis Photodyn Ther ; 24: 7-14, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30144532

RESUMO

Due to their many unique properties, graphene quantum dots (GQDs) have attracted much attention and are a promising material with potential applications in many fields. One application of GQDs is as a photodynamic therapy agent that generates singlet oxygen. In this work, GQDs were grown by focusing nanosecond laser pulses into benzene and then were later combined with methylene blue (MB) and used to eradicate the Gram-negative bacteria, Escherichia coli, and Gram-positive bacteria, Micrococcus luteus. Theoretical calculation of pressure evolution was calculated using the standard finite difference method. Detailed characterization was performed with transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR), UV-vis (UV-vis), and photoluminescence (PL) spectra. Furthermore, MB-GQD singlet oxygen generation was investigated by measuring the rate of 9,10-anthracenediyl-bis(methylene) dimalonic acid photobleaching. Combining MB with GQDs caused enhanced singlet oxygen generation. Our results show that the MB-GQD combination efficiently destroys bacteria. The (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay was used to determine if GQDs in dark conditions caused human cellular side-effects and affected cancer and noncancer cellular viability. We found that even high concentrations of GQDs do not alter viability under dark conditions. These results suggest that the MB-GQD combination is a promising form of photodynamic therapy.


Assuntos
Grafite/química , Terapia com Luz de Baixa Intensidade/métodos , Azul de Metileno/uso terapêutico , Pontos Quânticos/uso terapêutico , Oxigênio Singlete/agonistas , Compostos de Enxofre/uso terapêutico , Sobrevivência Celular/efeitos da radiação , Lasers de Estado Sólido , Azul de Metileno/administração & dosagem , Pontos Quânticos/administração & dosagem , Compostos de Enxofre/administração & dosagem
12.
PLoS One ; 13(3): e0192505, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29513752

RESUMO

Unlike cisplatin, which forms bifunctional DNA adducts, monofunctional platinum(II) complexes bind only one strand of DNA and might target cancer without causing auditory side-effects associated with cisplatin treatment. We synthesized the monofunctional triamine-ligated platinum(II) complexes, Pt(diethylenetriamine)Cl, [Pt(dien)Cl]+, and Pt(N,N-diethyldiethylenetriamine)Cl, [Pt(Et2dien)Cl]+, and the monofunctional heterocyclic-ligated platinum(II) complexes, pyriplatin and phenanthriplatin, and compared their 5'-GMP binding rates, cellular compartmental distribution and cellular viability effects. A zebrafish inner ear model was used to determine if the monofunctional complexes and cisplatin caused hearing threshold shifts and reduced auditory hair cell density. The four monofunctional complexes had varied relative GMP binding rates, but similar cytosolic and nuclear compartmental uptake in three cancer cell lines (A549, Caco2, HTB16) and a control cell line (IMR90). Phenanthriplatin had the strongest effect against cellular viability, comparable to cisplatin, followed by [Pt(Et2dien)Cl]+, pyriplatin and [Pt(dien)Cl]+. Phenanthriplatin also produced the highest hearing threshold shifts followed by [Pt(dien)Cl]+, [Pt(Et2dien)Cl]+, cisplatin and pyriplatin. Hair cell counts taken from four regions of the zebrafish saccule showed that cisplatin significantly reduced hair cell density in three regions and phenanthriplatin in only one region, with the other complexes having no significant effect. Utricular hair cell density was not reduced by any of the compounds. Our results suggest that placing greater steric hindrance cis to one side of the platinum coordinating center in monofunctional complexes promotes efficient targeting of the nuclear compartment and guanosine residues, and may be responsible for reducing cancer cell viability. Also, the monofunctional compounds caused hearing threshold shifts with minimal effect on hair cell density, which suggests that they may affect different pathways than cisplatin.


Assuntos
Antineoplásicos/farmacologia , Compostos Organoplatínicos/farmacologia , Fenantridinas/farmacologia , Platina/química , Células A549 , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Sítios de Ligação , Células CACO-2 , Contagem de Células , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Guanosina Monofosfato/química , Guanosina Monofosfato/metabolismo , Células Ciliadas Auditivas Internas/efeitos dos fármacos , Humanos , Ligantes , Compostos Organoplatínicos/química , Compostos Organoplatínicos/metabolismo , Fenantridinas/química , Fenantridinas/metabolismo , Peixe-Zebra
13.
Front Cell Neurosci ; 9: 131, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25954154

RESUMO

Sensory hair cells are specialized mechanotransductive receptors required for hearing and vestibular function. Loss of hair cells in humans and other mammals is permanent and causes reduced hearing and balance. In the early 1980's, it was shown that hair cells continue to be added to the inner ear sensory epithelia in cartilaginous and bony fishes. Soon thereafter, hair cell regeneration was documented in the chick cochlea following acoustic trauma. Since then, research using chick and other avian models has led to great insights into hair cell death and regeneration. However, with the rise of the zebrafish as a model organism for studying disease and developmental processes, there has been an increased interest in studying sensory hair cell death and regeneration in its lateral line and inner ears. Advances derived from studies in zebrafish and other fish species include understanding the effect of ototoxins on hair cells and finding otoprotectants to mitigate ototoxin damage, the role of cellular proliferation vs. direct transdifferentiation during hair cell regeneration, and elucidating cellular pathways involved in the regeneration process. This review will summarize research on hair cell death and regeneration using fish models, indicate the potential strengths and weaknesses of these models, and discuss several emerging areas of future studies.

14.
Int J Dev Neurosci ; 31(4): 250-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23376726

RESUMO

The mechanisms underlying morphogenesis of axons and dendrites are critical for understanding both the structure and function of the nervous system. Since a number of kinases have a well-known effect on neurite outgrowth, we tested the hypothesis that specific phosphatases can also play a role in neurite extension and branching. Both protein phosphatase 1 (PP1) and 2A (PP2A) are present in growing processes and can regulate neuronal outgrowth. Loss-, gain- and recovery-of-function analyses in cultured hippocampal neurons tested the role of PP1 and PP2A in neurite growth. siRNA partially knocked down specific phosphatase isoforms and showed that reducing PP2A increased neurite length. Broad spectrum pharmacologic inhibition of PP1 caused the opposite effect from RNAi of specific phosphatases, indicating that two phosphatase pathways likely affect neurite morphogenesis. Over-expression of PP2A resulted in shorter neurites and decreased dendritic branching. Rescue analysis showed that PP2A homologs could restore the longer neurites caused by RNAi, to their normal size, indicating that both reagents target the same pathway. Thus, the well-known effects of specific kinases can be countered by the activity of phosphatases at different times and locations in the growing neurite. By working together, kinases and phosphatases can play a dynamic role in regulating neurite extension during development.


Assuntos
Neuritos/fisiologia , Neuritos/ultraestrutura , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 2/metabolismo , Animais , Animais Recém-Nascidos , Crescimento Celular , Células Cultivadas , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA