Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5329, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658064

RESUMO

Dietary lipids can affect metabolic health through gut microbiota-mediated mechanisms, but the influence of lipid-microbiota interaction on liver steatosis is largely unknown. We investigate the impact of dietary lipids on human gut microbiota composition and the effects of microbiota-lipid interactions on steatosis in male mice. In humans, low intake of saturated fatty acids (SFA) is associated with increased microbial diversity independent of fiber intake. In mice, poorly absorbed dietary long-chain SFA, particularly stearic acid, induce a shift in bile acid profile and improved metabolism and steatosis. These benefits are dependent on the gut microbiota, as they are transmitted by microbial transfer. Diets enriched in polyunsaturated fatty acids are protective against steatosis but have minor influence on the microbiota. In summary, we find that diets enriched in poorly absorbed long-chain SFA modulate gut microbiota profiles independent of fiber intake, and this interaction is relevant to improve metabolism and decrease liver steatosis.


Assuntos
Fígado Gorduroso , Microbioma Gastrointestinal , Microbiota , Humanos , Masculino , Animais , Camundongos , Ácidos Graxos , Ácidos e Sais Biliares , Gorduras na Dieta
2.
Front Endocrinol (Lausanne) ; 14: 1215947, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37529599

RESUMO

Background: Estrogen Receptor α (ERα) is a significant modulator of energy balance and lipid/glucose metabolisms. Beyond the classical nuclear actions of the receptor, rapid activation of intracellular signaling pathways is mediated by a sub-fraction of ERα localized to the plasma membrane, known as Membrane Initiated Steroid Signaling (MISS). However, whether membrane ERα is involved in the protective metabolic actions of endogenous estrogens in conditions of nutritional challenge, and thus contributes to sex differences in the susceptibility to metabolic diseases, remains to be clarified. Methods: Male and female C451A-ERα mice, harboring a point mutation which results in the abolition of membrane localization and MISS-related effects of the receptor, and their wild-type littermates (WT-ERα) were maintained on a normal chow diet (NCD) or fed a high-fat diet (HFD). Body weight gain, body composition and glucose tolerance were monitored. Insulin sensitivity and energy balance regulation were further investigated in HFD-fed female mice. Results: C451A-ERα genotype had no influence on body weight gain, adipose tissue accumulation and glucose tolerance in NCD-fed mice of both sexes followed up to 7 months of age, nor male mice fed a HFD for 12 weeks. In contrast, compared to WT-ERα littermates, HFD-fed C451A-ERα female mice exhibited: 1) accelerated fat mass accumulation, liver steatosis and impaired glucose tolerance; 2) whole-body insulin resistance, assessed by hyperinsulinemic-euglycemic clamps, and altered insulin-induced signaling in skeletal muscle and liver; 3) significant decrease in energy expenditure associated with histological and functional abnormalities of brown adipose tissue and a defect in thermogenesis regulation in response to cold exposure. Conclusion: Besides the well-characterized role of ERα nuclear actions, membrane-initiated ERα extra-nuclear signaling contributes to female, but not to male, protection against HFD-induced obesity and associated metabolic disorders in mouse.


Assuntos
Resistência à Insulina , Doenças não Transmissíveis , Feminino , Masculino , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Receptor alfa de Estrogênio/metabolismo , Receptores de Estrogênio , Resistência à Insulina/fisiologia , Obesidade/genética , Obesidade/metabolismo , Insulina/metabolismo , Aumento de Peso , Glucose/metabolismo , Tecido Adiposo Marrom/metabolismo
3.
Elife ; 122023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36649053

RESUMO

The rod-shaped adult cardiomyocyte (CM) harbors a unique architecture of its lateral surface with periodic crests, relying on the presence of subsarcolemmal mitochondria (SSM) with unknown role. Here, we investigated the development and functional role of CM crests during the postnatal period. We found in rodents that CM crest maturation occurs late between postnatal day 20 (P20) and P60 through both SSM biogenesis, swelling and crest-crest lateral interactions between adjacent CM, promoting tissue compaction. At the functional level, we showed that the P20-P60 period is dedicated to the improvement of relaxation. Interestingly, crest maturation specifically contributes to an atypical CM hypertrophy of its short axis, without myofibril addition, but relying on CM lateral stretching. Mechanistically, using constitutive and conditional CM-specific knock-out mice, we identified ephrin-B1, a lateral membrane stabilizer, as a molecular determinant of P20-P60 crest maturation, governing both the CM lateral stretch and the diastolic function, thus highly suggesting a link between crest maturity and diastole. Remarkably, while young adult CM-specific Efnb1 KO mice essentially exhibit an impairment of the ventricular diastole with preserved ejection fraction and exercise intolerance, they progressively switch toward systolic heart failure with 100% KO mice dying after 13 months, indicative of a critical role of CM-ephrin-B1 in the adult heart function. This study highlights the molecular determinants and the biological implication of a new late P20-P60 postnatal developmental stage of the heart in rodents during which, in part, ephrin-B1 specifically regulates the maturation of the CM surface crests and of the diastolic function.


Assuntos
Efrina-B1 , Miócitos Cardíacos , Animais , Camundongos , Diástole , Miofibrilas
4.
Cell Rep ; 39(10): 110910, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35675775

RESUMO

In hepatocytes, peroxisome proliferator-activated receptor α (PPARα) orchestrates a genomic and metabolic response required for homeostasis during fasting. This includes the biosynthesis of ketone bodies and of fibroblast growth factor 21 (FGF21). Here we show that in the absence of adipose triglyceride lipase (ATGL) in adipocytes, ketone body and FGF21 production is impaired upon fasting. Liver gene expression analysis highlights a set of fasting-induced genes sensitive to both ATGL deletion in adipocytes and PPARα deletion in hepatocytes. Adipose tissue lipolysis induced by activation of the ß3-adrenergic receptor also triggers such PPARα-dependent responses not only in the liver but also in brown adipose tissue (BAT). Intact PPARα activity in hepatocytes is required for the cross-talk between adipose tissues and the liver during fat mobilization.


Assuntos
Lipólise , PPAR alfa , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Hepatócitos/metabolismo , Corpos Cetônicos/metabolismo , Lipólise/fisiologia , PPAR alfa/metabolismo
5.
Cell Rep ; 39(2): 110674, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35417722

RESUMO

Liver physiology is circadian and sensitive to feeding and insulin. Food intake regulates insulin secretion and is a dominant signal for the liver clock. However, how much insulin contributes to the effect of feeding on the liver clock and rhythmic gene expression remains to be investigated. Insulin action partly depends on changes in insulin receptor (IR)-dependent gene expression. Here, we use hepatocyte-restricted gene deletion of IR to evaluate its role in the regulation and oscillation of gene expression as well as in the programming of the circadian clock in the adult mouse liver. We find that, in the absence of IR, the rhythmicity of core-clock gene expression is altered in response to day-restricted feeding. This change in core-clock gene expression is associated with defective reprogramming of liver gene expression. Our data show that an intact hepatocyte insulin receptor is required to program the liver clock and associated rhythmic gene expression.


Assuntos
Fatores de Transcrição ARNTL , Relógios Circadianos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Expressão Gênica , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Insulina/metabolismo , Fígado/metabolismo , Camundongos , Receptor de Insulina/genética , Receptor de Insulina/metabolismo
6.
Sci Adv ; 8(12): eabg9055, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35333579

RESUMO

Dysregulations of lipid metabolism in the liver may trigger steatosis progression, leading to potentially severe clinical consequences such as nonalcoholic fatty liver diseases (NAFLDs). Molecular mechanisms underlying liver lipogenesis are very complex and fine-tuned by chromatin dynamics and multiple key transcription factors. Here, we demonstrate that the nuclear factor HMGB1 acts as a strong repressor of liver lipogenesis. Mice with liver-specific Hmgb1 deficiency display exacerbated liver steatosis, while Hmgb1-overexpressing mice exhibited a protection from fatty liver progression when subjected to nutritional stress. Global transcriptome and functional analysis revealed that the deletion of Hmgb1 gene enhances LXRα and PPARγ activity. HMGB1 repression is not mediated through nucleosome landscape reorganization but rather via a preferential DNA occupation in a region carrying genes regulated by LXRα and PPARγ. Together, these findings suggest that hepatocellular HMGB1 protects from liver steatosis development. HMGB1 may constitute a new attractive option to therapeutically target the LXRα-PPARγ axis during NAFLD.

7.
Gut ; 71(4): 807-821, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33903148

RESUMO

OBJECTIVE: We evaluated the influence of sex on the pathophysiology of non-alcoholic fatty liver disease (NAFLD). We investigated diet-induced phenotypic responses to define sex-specific regulation between healthy liver and NAFLD to identify influential pathways in different preclinical murine models and their relevance in humans. DESIGN: Different models of diet-induced NAFLD (high-fat diet, choline-deficient high-fat diet, Western diet or Western diet supplemented with fructose and glucose in drinking water) were compared with a control diet in male and female mice. We performed metabolic phenotyping, including plasma biochemistry and liver histology, untargeted large-scale approaches (liver metabolome, lipidome and transcriptome), gene expression profiling and network analysis to identify sex-specific pathways in the mouse liver. RESULTS: The different diets induced sex-specific responses that illustrated an increased susceptibility to NAFLD in male mice. The most severe lipid accumulation and inflammation/fibrosis occurred in males receiving the high-fat diet and Western diet, respectively. Sex-biased hepatic gene signatures were identified for these different dietary challenges. The peroxisome proliferator-activated receptor α (PPARα) co-expression network was identified as sexually dimorphic, and in vivo experiments in mice demonstrated that hepatocyte PPARα determines a sex-specific response to fasting and treatment with pemafibrate, a selective PPARα agonist. Liver molecular signatures in humans also provided evidence of sexually dimorphic gene expression profiles and the sex-specific co-expression network for PPARα. CONCLUSIONS: These findings underscore the sex specificity of NAFLD pathophysiology in preclinical studies and identify PPARα as a pivotal, sexually dimorphic, pharmacological target. TRIAL REGISTRATION NUMBER: NCT02390232.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Humanos , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , PPAR alfa/metabolismo
8.
Metabolites ; 11(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34436443

RESUMO

The liver is a vital organ that sustains multiple functions beneficial for the whole organism. It is sexually dimorphic, presenting sex-biased gene expression with implications for the phenotypic differences between males and females. Estrogens are involved in this sex dimorphism and their actions in the liver of several reptiles, fishes, amphibians, and birds are discussed. The liver participates in reproduction by producing vitellogenins (yolk proteins) and eggshell proteins under the control of estrogens that act via two types of receptors active either mainly in the cell nucleus (ESR) or the cell membrane (GPER1). Estrogens also control hepatic lipid and lipoprotein metabolisms, with a triglyceride carrier role for VLDL from the liver to the ovaries during oogenesis. Moreover, the activation of the vitellogenin genes is used as a robust biomarker for exposure to xenoestrogens. In the context of liver diseases, high plasma estrogen levels are observed in fatty liver hemorrhagic syndrome (FLHS) in chicken implicating estrogens in the disease progression. Fishes are also used to investigate liver diseases, including models generated by mutation and transgenesis. In conclusion, studies on the roles of estrogens in the non-mammalian oviparous vertebrate liver have contributed enormously to unveil hormone-dependent physiological and physiopathological processes.

9.
iScience ; 24(3): 102218, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33748706

RESUMO

TxNIP (Thioredoxin-interacting protein) is considered as a potential drug target for type 2 diabetes. Although TxNIP expression is correlated with hyperglycemia and glucotoxicity in pancreatic ß cells, its regulation in liver cells has been less investigated. In the current study, we aim at providing a better understanding of Txnip regulation in hepatocytes in response to physiological stimuli and in the context of hyperglycemia in db/db mice. We focused on regulatory pathways governed by ChREBP (Carbohydrate Responsive Element Binding Protein) and FoxO1 (Forkhead box protein O1), transcription factors that play central roles in mediating the effects of glucose and fasting on gene expression, respectively. Studies using genetically modified mice reveal that hepatic TxNIP is up-regulated by both ChREBP and FoxO1 in liver cells and that its expression strongly correlates with fasting, suggesting a major role for this protein in the physiological adaptation to nutrient restriction.

11.
Cells ; 9(7)2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650421

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a major health issue worldwide, frequently associated with obesity and type 2 diabetes. Steatosis is the initial stage of the disease, which is characterized by lipid accumulation in hepatocytes, which can progress to non-alcoholic steatohepatitis (NASH) with inflammation and various levels of fibrosis that further increase the risk of developing cirrhosis and hepatocellular carcinoma. The pathogenesis of NAFLD is influenced by interactions between genetic and environmental factors and involves several biological processes in multiple organs. No effective therapy is currently available for the treatment of NAFLD. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that regulate many functions that are disturbed in NAFLD, including glucose and lipid metabolism, as well as inflammation. Thus, they represent relevant clinical targets for NAFLD. In this review, we describe the determinants and mechanisms underlying the pathogenesis of NAFLD, its progression and complications, as well as the current therapeutic strategies that are employed. We also focus on the complementary and distinct roles of PPAR isotypes in many biological processes and on the effects of first-generation PPAR agonists. Finally, we review novel and safe PPAR agonists with improved efficacy and their potential use in the treatment of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Animais , Fibrose/tratamento farmacológico , Fibrose/metabolismo , Humanos , Ligantes
12.
Sci Rep ; 10(1): 6489, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32300166

RESUMO

Peroxisome proliferator activated receptor α (PPARα) acts as a fatty acid sensor to orchestrate the transcription of genes coding for rate-limiting enzymes required for lipid oxidation in hepatocytes. Mice only lacking Pparα in hepatocytes spontaneously develop steatosis without obesity in aging. Steatosis can develop into non alcoholic steatohepatitis (NASH), which may progress to irreversible damage, such as fibrosis and hepatocarcinoma. While NASH appears as a major public health concern worldwide, it remains an unmet medical need. In the current study, we investigated the role of hepatocyte PPARα in a preclinical model of steatosis. For this, we used High Fat Diet (HFD) feeding as a model of obesity in C57BL/6 J male Wild-Type mice (WT), in whole-body Pparα- deficient mice (Pparα-/-) and in mice lacking Pparα only in hepatocytes (Pparαhep-/-). We provide evidence that Pparα deletion in hepatocytes promotes NAFLD and liver inflammation in mice fed a HFD. This enhanced NAFLD susceptibility occurs without development of glucose intolerance. Moreover, our data reveal that non-hepatocytic PPARα activity predominantly contributes to the metabolic response to HFD. Taken together, our data support hepatocyte PPARα as being essential to the prevention of NAFLD and that extra-hepatocyte PPARα activity contributes to whole-body lipid homeostasis.


Assuntos
Hepatócitos/patologia , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Obesidade/metabolismo , PPAR alfa/deficiência , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Hepatócitos/imunologia , Humanos , Metabolismo dos Lipídeos/imunologia , Lipidômica , Fígado/citologia , Fígado/imunologia , Masculino , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/etiologia , Obesidade/imunologia , Obesidade/patologia , PPAR alfa/genética
14.
Diabetologia ; 63(3): 453-461, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31754750

RESUMO

Gender and biological sex impact the pathogenesis of numerous diseases, including metabolic disorders such as diabetes. In most parts of the world, diabetes is more prevalent in men than in women, especially in middle-aged populations. In line with this, considering almost all animal models, males are more likely to develop obesity, insulin resistance and hyperglycaemia than females in response to nutritional challenges. As summarised in this review, it is now obvious that many aspects of energy balance and glucose metabolism are regulated differently in males and females and influence their predisposition to type 2 diabetes. During their reproductive life, women exhibit specificities in energy partitioning as compared with men, with carbohydrate and lipid utilisation as fuel sources that favour energy storage in subcutaneous adipose tissues and preserve them from visceral and ectopic fat accumulation. Insulin sensitivity is higher in women, who are also characterised by higher capacities for insulin secretion and incretin responses than men; although, these sex advantages all disappear when glucose tolerance deteriorates towards diabetes. Clinical and experimental observations evidence the protective actions of endogenous oestrogens, mainly through oestrogen receptor α activation in various tissues, including the brain, the liver, skeletal muscle, adipose tissue and pancreatic beta cells. However, beside sex steroids, underlying mechanisms need to be further investigated, especially the role of sex chromosomes, fetal/neonatal programming and epigenetic modifications. On the path to precision medicine, further deciphering sex-specific traits in energy balance and glucose homeostasis is indeed a priority topic to optimise individual approaches in type 2 diabetes prevention and treatment.


Assuntos
Diabetes Mellitus Tipo 2/etiologia , Metabolismo Energético/fisiologia , Caracteres Sexuais , Animais , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/metabolismo , Suscetibilidade a Doenças , Desenvolvimento Embrionário/fisiologia , Feminino , Humanos , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Gravidez , Fatores de Risco
15.
Metabolites ; 10(1)2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-31877749

RESUMO

Hepatic metabolites provide valuable information on the physiological state of an organism, and thus, they are monitored in many clinical situations. Typically, monitoring requires several analyses for each class of targeted metabolite, which is time consuming. The present study aimed to evaluate a proton nuclear magnetic resonance (1H-NMR) method for obtaining quantitative measurements of aqueous and lipidic metabolites. We optimized the extraction protocol, the standard samples, and the organic solvents for the absolute quantification of lipid species. To validate the method, we analyzed metabolic profiles in livers of mice fed three different diets. We compared our results with values obtained with conventional methods and found strong correlations. The 1H-NMR protocol enabled the absolute quantification of 29 aqueous metabolites and eight lipid classes. Results showed that mice fed a diet enriched in saturated fatty acids had higher levels of triglycerides, cholesterol ester, monounsaturated fatty acids, lactate, 3-hydroxy-butyrate, and alanine and lower levels of glucose, compared to mice fed a control diet. In conclusion, proton NMR provided a rapid overview of the main lipid classes (triglycerides, cholesterol, phospholipids, fatty acids) and the most abundant aqueous metabolites in liver.

16.
Sci Rep ; 9(1): 20169, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882815

RESUMO

Metabolic diseases such as obesity, type II diabetes and hepatic steatosis are a public health concern in developed countries. The metabolic risk is gender-dependent. The constitutive androstane receptor (CAR), which is at the crossroads between energy metabolism and endocrinology, has recently emerged as a promising therapeutic agent for the treatment of obesity and type 2 diabetes. In this study we sought to determine its role in the dimorphic regulation of energy homeostasis. We tracked male and female WT and CAR deficient (CAR-/-) mice for over a year. During aging, CAR-/- male mice developed hypercortisism, obesity, glucose intolerance, insulin insensitivity, dyslipidemia and hepatic steatosis. Remarkably, the latter modifications were absent, or minor, in female CAR-/- mice. When ovariectomized, CAR-/- female mice developed identical patterns of metabolic disorders as observed in male mice. These results highlight the importance of steroid hormones in the regulation of energy metabolism by CAR. They unveil a sexually dimorphic role of CAR in the maintenance of endocrine and metabolic homeostasis underscoring the importance of considering sex in treatment of metabolic diseases.

17.
Hepatol Commun ; 3(7): 908-924, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31304450

RESUMO

Hepatocyte estrogen receptor α (ERα) was recently recognized as a relevant molecular target for nonalcoholic fatty liver disease (NAFLD) prevention. The present study defined to what extent hepatocyte ERα could be involved in preserving metabolic homeostasis in response to a full (17ß-estradiol [E2]) or selective (selective estrogen receptor modulator [SERM]) activation. Ovariectomized mice harboring a hepatocyte-specific ERα deletion (LERKO mice) and their wild-type (WT) littermates were fed a high-fat diet (HFD) and concomitantly treated with E2, tamoxifen (TAM; the most used SERM), or vehicle. As expected, both E2 and TAM prevented all HFD-induced metabolic disorders in WT mice, and their protective effects against steatosis were abolished in LERKO mice. However, while E2 still prevented obesity and glucose intolerance in LERKO mice, hepatocyte ERα deletion also abrogated TAM-mediated control of food intake as well as its beneficial actions on adiposity, insulin sensitivity, and glucose homeostasis, suggesting a whole-body protective role for liver-derived circulating factors. Moreover, unlike E2, TAM induced a rise in plasma concentration of the anorectic hepatokine growth differentiation factor 15 (Gdf15) through a transcriptional mechanism dependent on hepatocyte ERα activation. Accordingly, ERα was associated with specific binding sites in the Gdf15 regulatory region in hepatocytes from TAM-treated mice but not under E2 treatment due to specific epigenetic modifications. Finally, all the protective effects of TAM were abolished in HFD-fed GDF15-knockout mice. Conclusion: We identified the selective modulation of hepatocyte ERα as a pharmacologic strategy to induce sufficient anorectic hepatokine Gdf15 to prevent experimental obesity, type 2 diabetes, and NAFLD.

18.
Nat Commun ; 10(1): 1566, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30952952

RESUMO

The class 3 phosphoinositide 3-kinase (PI3K) is required for lysosomal degradation by autophagy and vesicular trafficking, assuring nutrient availability. Mitochondrial lipid catabolism is another energy source. Autophagy and mitochondrial metabolism are transcriptionally controlled by nutrient sensing nuclear receptors. However, the class 3 PI3K contribution to this regulation is unknown. We show that liver-specific inactivation of Vps15, the essential regulatory subunit of the class 3 PI3K, elicits mitochondrial depletion and failure to oxidize fatty acids. Mechanistically, transcriptional activity of Peroxisome Proliferator Activated Receptor alpha (PPARα), a nuclear receptor orchestrating lipid catabolism, is blunted in Vps15-deficient livers. We find PPARα repressors Histone Deacetylase 3 (Hdac3) and Nuclear receptor co-repressor 1 (NCoR1) accumulated in Vps15-deficient livers due to defective autophagy. Activation of PPARα or inhibition of Hdac3 restored mitochondrial biogenesis and lipid oxidation in Vps15-deficient hepatocytes. These findings reveal roles for the class 3 PI3K and autophagy in transcriptional coordination of mitochondrial metabolism.


Assuntos
Autofagia/fisiologia , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , PPAR alfa/metabolismo , Fosfatidilinositol 3-Quinases/fisiologia , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Fenofibrato/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histona Desacetilases/fisiologia , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismo , Correpressor 1 de Receptor Nuclear/fisiologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transcrição Gênica/efeitos dos fármacos , Proteína VPS15 de Distribuição Vacuolar/genética , Proteína VPS15 de Distribuição Vacuolar/metabolismo , Proteína VPS15 de Distribuição Vacuolar/fisiologia
19.
J Hepatol ; 70(5): 963-973, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30677458

RESUMO

BACKGROUND & AIMS: Although the role of inflammation to combat infection is known, the contribution of metabolic changes in response to sepsis is poorly understood. Sepsis induces the release of lipid mediators, many of which activate nuclear receptors such as the peroxisome proliferator-activated receptor (PPAR)α, which controls both lipid metabolism and inflammation. We aimed to elucidate the previously unknown role of hepatic PPARα in the response to sepsis. METHODS: Sepsis was induced by intraperitoneal injection of Escherichia coli in different models of cell-specific Ppara-deficiency and their controls. The systemic and hepatic metabolic response was analyzed using biochemical, transcriptomic and functional assays. PPARα expression was analyzed in livers from elective surgery and critically ill patients and correlated with hepatic gene expression and blood parameters. RESULTS: Both whole body and non-hematopoietic Ppara-deficiency in mice decreased survival upon bacterial infection. Livers of septic Ppara-deficient mice displayed an impaired metabolic shift from glucose to lipid utilization resulting in more severe hypoglycemia, impaired induction of hyperketonemia and increased steatosis due to lower expression of genes involved in fatty acid catabolism and ketogenesis. Hepatocyte-specific deletion of PPARα impaired the metabolic response to sepsis and was sufficient to decrease survival upon bacterial infection. Hepatic PPARA expression was lower in critically ill patients and correlated positively with expression of lipid metabolism genes, but not with systemic inflammatory markers. CONCLUSION: During sepsis, Ppara-deficiency in hepatocytes is deleterious as it impairs the adaptive metabolic shift from glucose to FA utilization. Metabolic control by PPARα in hepatocytes plays a key role in the host defense against infection. LAY SUMMARY: As the main cause of death in critically ill patients, sepsis remains a major health issue lacking efficacious therapies. While current clinical literature suggests an important role for inflammation, metabolic aspects of sepsis have mostly been overlooked. Here, we show that mice with an impaired metabolic response, due to deficiency of the nuclear receptor PPARα in the liver, exhibit enhanced mortality upon bacterial infection despite a similar inflammatory response, suggesting that metabolic interventions may be a viable strategy for improving sepsis outcomes.


Assuntos
Adaptação Fisiológica , Fígado/metabolismo , PPAR alfa/fisiologia , Sepse/metabolismo , Animais , Infecções Bacterianas/metabolismo , Ácidos Graxos/metabolismo , Glucose/metabolismo , Humanos , Inflamação/etiologia , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA