Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Biology (Basel) ; 13(10)2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39452111

RESUMO

Inner ear disorders, including sensorineural hearing loss, Meniere's disease, and vestibular neuritis, are prevalent conditions that significantly impact the quality of life. Despite their high incidence, the underlying pathophysiology of these disorders remains elusive, and current treatment options are often inadequate. Emerging evidence suggests that pericytes, a type of vascular mural cell specialized to maintain the integrity and function of the microvasculature, may play a crucial role in the development and progression of inner ear disorders. The pericytes are present in the microvasculature of both the cochlea and the vestibular system, where they regulate blood flow, maintain the blood-labyrinth barrier, facilitate angiogenesis, and provide trophic support to neurons. Understanding their role in inner ear disorders may provide valuable insights into the pathophysiology of these conditions and lead to the development of novel diagnostic and therapeutic strategies, improving the standard of living. This comprehensive review aims to provide a detailed overview of the role of pericytes in inner ear disorders, highlighting the anatomy and physiology in the microvasculature, and analyzing the mechanisms that contribute to the development of the disorders. Furthermore, we explore the potential pericyte-targeted therapies, including antioxidant, anti-inflammatory, and angiogenic approaches, as well as gene therapy strategies.

2.
Am J Med Genet A ; : e63901, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39392177

RESUMO

Mosaic variegated aneuploidy (MVA) is an autosomal recessive disorder characterized by mosaic aneuploidies, predominantly trisomies, involving multiple different chromosomes and tissues. The proportion of aneuploid cells varies, and most patients present with intrauterine growth delay, microcephaly, and a broad spectrum of congenital abnormalities. We report a patient with a distinctive type of MVA discovered in bone marrow (BM) when she was 3-month-old due to neutropenia and hypocellular bone marrow. She was followed up for more than 20 years, and different trisomic cells were repeatedly discovered in different tissues, whereas her clinical picture has never been severe. The main sign remained intermittent neutropenia, not cyclic and often not too severe, occasionally with anemia and thrombocytopenia. Retromicrognathia was the only dysmorphic sign. Unlike other patients with MVA, the trisomies in all tissues involved almost invariably chromosomes 18 and 19. Therefore, the peculiarities of our patient were the clinical and the atypical cytogenetic pictures. Nevertheless, we looked for mutations in the seven causative genes of the known types of MVA, but the results were negative. Then, we analyzed the entire exome to find out other possible causing mutations, but also this attempt failed to discover a possible cause of this distinctive form of MVA.

3.
Int J Mol Sci ; 25(17)2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39273152

RESUMO

Piezo proteins have been identified as mechanosensitive ion channels involved in mechanotransduction. Several ion channel dysfunctions may be associated with diseases (including deafness and pain); thus, studying them is critical to understand their role in mechanosensitive disorders and to establish new therapeutic strategies. The current study investigated for the first time the expression patterns of Piezo proteins in zebrafish octavolateralis mechanosensory organs. Piezo 1 and 2 were immunoreactive in the sensory epithelia of the lateral line system and the inner ear. Piezo 1 (28.7 ± 1.55 cells) and Piezo 2 (28.8 ± 3.31 cells) immunopositive neuromast cells were identified based on their ultrastructural features, and their overlapping immunoreactivity to the s100p specific marker (28.6 ± 1.62 cells), as sensory cells. These findings are in favor of Piezo proteins' potential role in sensory cell activation, while their expression on mantle cells reflects their implication in the maintenance and regeneration of the neuromast during cell turnover. In the inner ear, Piezo proteins' colocalization with BDNF introduces their potential implication in neuronal plasticity and regenerative events, typical of zebrafish mechanosensory epithelia. Assessing these proteins in zebrafish could open up new scenarios for the roles of these important ionic membrane channels, for example in treating impairments of sensory systems.


Assuntos
Orelha Interna , Canais Iônicos , Sistema da Linha Lateral , Mecanotransdução Celular , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Orelha Interna/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Canais Iônicos/metabolismo , Canais Iônicos/genética , Sistema da Linha Lateral/metabolismo
4.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000511

RESUMO

The ion channels Piezo 1 and Piezo 2 have been identified as membrane mechano-proteins. Studying mechanosensitive channels in chemosensory organs could help in understanding the mechanisms by which these channels operate, offering new therapeutic targets for various disorders. This study investigates the expression patterns of Piezo proteins in zebrafish chemosensory organs. For the first time, Piezo protein expression in adult zebrafish chemosensory organs is reported. In the olfactory epithelium, Piezo 1 immunolabels kappe neurons, microvillous cells, and crypt neurons, while Calretinin is expressed in ciliated sensory cells. The lack of overlap between Piezo 1 and Calretinin confirms Piezo 1's specificity for kappe neurons, microvillous cells, and crypt neurons. Piezo 2 shows intense immunoreactivity in kappe neurons, one-ciliated sensory cells, and multi-ciliated sensory cells, with overlapping Calretinin expression, indicating its olfactory neuron nature. In taste buds, Piezo 1 immunolabels Merkel-like cells at the bases of cutaneous and pharyngeal taste buds and the light and dark cells of cutaneous and oral taste buds. It also marks the dark cells of pharyngeal taste buds and support cells in oral taste buds. Piezo 2 is found in the light and dark cells of cutaneous and oral taste buds and isolated chemosensory cells. These findings provide new insights into the distribution of Piezo channels in zebrafish chemosensory organs, enhancing our understanding of their sensory processing and potential therapeutic applications.


Assuntos
Canais Iônicos , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Canais Iônicos/metabolismo , Canais Iônicos/genética , Papilas Gustativas/metabolismo , Calbindina 2/metabolismo , Mucosa Olfatória/metabolismo
5.
Int J Mol Sci ; 25(12)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38928336

RESUMO

Chlorpyrifos (CPF) is a widely used organophosphate insecticide, though its excessive use causes environmental contamination, raising concerns about its adverse effects on human health. In this regard, Urtica dioica stands out as a promising candidate for counteracting chemical 'contaminant' toxicity thanks to its therapeutic properties. Therefore, our study aimed to investigate the potential of an Urtica dioica ethanolic extract (UDE) to mitigate chlorpyrifos-induced toxicity. Eight compounds in the Urtica dioica ethanolic extract have been identified, most of which present significant potential as antioxidant, anti-inflammatory, and neuroprotective agents. Chlorpyrifos exposure altered hatching rates, increased the incidence of teratogenic effects, and upregulated the expression of brain-derived neurotrophic factor (Bdnf) in zebrafish larvae telencephalon. On the other hand, UDE demonstrated a preventive effect against CPF-induced teratogenicity, which is expressed by a lower morphological deformity rate. Moreover, the UDE showed a rather protective effect, maintaining the physiological condition of the telencephalon. Additionally, CPF altered the locomotor behavior of larvae, which was characterized by irregular swimming and increased activity. This defective behavioral pattern was slightly attenuated by the UDE. Our findings suggest that the UDE possesses significant protective properties against CPF-induced toxicity, probably conferred by its natural antioxidant and anti-inflammatory contents. Still, further research is needed to elucidate the recruited mechanisms and implicated pathways on UDE's protective effects.


Assuntos
Clorpirifos , Larva , Extratos Vegetais , Urtica dioica , Peixe-Zebra , Animais , Clorpirifos/toxicidade , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Larva/efeitos dos fármacos , Urtica dioica/química , Antioxidantes/farmacologia , Inseticidas/toxicidade , Telencéfalo/efeitos dos fármacos , Telencéfalo/metabolismo
6.
J Food Sci ; 89(6): 3729-3744, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38709878

RESUMO

Citrus fruits are a diverse and economically important group of fruit crops known for their distinctive flavors and high nutritional value. Their cultivation and consumption contribute significantly to the global agricultural economy and offer a wide range of health benefits. Among the genetic diversity of citrus species, Citrus x limon (L.) Osbeck is particularly relevant due to its chemical composition and potential health benefits. Two cultivars from the Sicily region (southern Italy) were compared for their phenolic content and preliminary antioxidant activity to select the distinctive extract with potential biological activity. A detailed characterization revealed the occurrence of phenolics, coumarins, and flavonoids. The quantification of metabolites contained in the selected extract was performed by an ultrahigh-performance liquid chromatographic method coupled with an ultraviolet detector. Different concentrations were tested in vivo through the fish embryo acute toxicity test, and the 50% lethal dose of 107,833 µg mL-1 was calculated. Finally, the effect of the extract on hatching was evaluated, and a dose-dependent relationship with the accelerated hatching rate was reported, suggesting a Femminello Zagara Bianca green peel upregulating effect on the hatching enzymes. PRACTICAL APPLICATION: Citrus fruits and their products continue to be one of the natural food sources with the highest waste output. In this study, we demonstrate how food industry waste, particularly lemon peel, is rich in bioactive compounds with anti-inflammatory and antioxidant properties that may be used in the nutraceuticals industry.


Assuntos
Antioxidantes , Citrus , Embrião não Mamífero , Flavonoides , Frutas , Metabolômica , Fenóis , Extratos Vegetais , Peixe-Zebra , Animais , Citrus/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Frutas/química , Antioxidantes/farmacologia , Antioxidantes/análise , Embrião não Mamífero/efeitos dos fármacos , Fenóis/análise , Fenóis/toxicidade , Metabolômica/métodos , Flavonoides/análise , Sicília , Cumarínicos/análise , Cromatografia Líquida de Alta Pressão/métodos
7.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473977

RESUMO

Specific subpopulations of neurons in nerve and sensory systems must be developed and maintained, and this is accomplished in significant part by neurotrophins (NTs) and the signaling receptors on which they act, called tyrosine protein kinase receptors (Trks). The neurotrophins-tyrosine protein kinase receptors (NTs/Trks) system is involved in sensory organ regulation, including the visual system. An NTs/Trks system alteration is associated with neurodegeneration related to aging and diseases, including retinal pathologies. An emergent model in the field of translational medicine, for instance, in aging study, is the annual killifish belonging to the Nothobranchius genus, thanks to its short lifespan. Members of this genus, such as Nothobranchius guentheri, and humans share a similar retinal stratigraphy. Nevertheless, according to the authors' knowledge, the occurrence and distribution of the NTs/Trks system in the retina of N. guentheri has never been investigated before. Therefore, the present study aimed to localize neurotrophin BDNF, NGF, and NT-3 and TrkA, TrkB, and TrkC receptors in the N. guentheri retina using the immunofluorescence method. The present investigation demonstrates, for the first time, the occurrence of the NTs/Trks system in N. guentheri retina and, consequently, the potential key role of these proteins in the biology and survival of the retinal cells.


Assuntos
Peixes Listrados , Fatores de Crescimento Neural , Receptores de Fator de Crescimento Neural , Humanos , Receptores de Fator de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/metabolismo , Receptores Proteína Tirosina Quinases/fisiologia , Retina/metabolismo , Receptor trkA , Neurotrofina 3 , Fator Neurotrófico Derivado do Encéfalo
8.
Genes (Basel) ; 14(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38003028

RESUMO

The patient reported here underwent hematopoietic stem cell transplantation (HSCT) due to chronic granulomatous disease (CGD) caused by biallelic mutations of the NCF1 gene. Two years later, he developed AML, which was unexpected and was recognized via sex-mismatched chromosomes as deriving from the donor cells; the patient was male, and the donor was his sister. Donor cell leukemia (DCL) is very rare, and it had never been reported in patients with CGD after HSCT. In the subsequent ten years, the AML relapsed three times and the patient underwent chemotherapy and three further HSCTs; donors were the same sister from the first HSCT, an unrelated donor, and his mother. The patient died during the third relapse. The DCL was characterized since onset by an acquired translocation between chromosomes 9 and 11, with a molecular rearrangement between the MLL and MLLT3 genes-a quite frequent cause of AML. In all of the relapses, the malignant clone had XX sex chromosomes and this rearrangement, thus indicating that it was always the original clone derived from the transplanted sister's cells. It exhibited the ability to remain quiescent in the BM during repeated chemotherapy courses, remission periods and HSCT. The leukemic clone then acquired different additional anomalies during the ten years of follow-up, with cytogenetic results characterized both by anomalies frequent in AML and by different, non-recurrent changes. This type of cytogenetic course is uncommon in AML.


Assuntos
Doença Granulomatosa Crônica , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Humanos , Masculino , Doença Granulomatosa Crônica/genética , Doença Granulomatosa Crônica/terapia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Doadores não Relacionados , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/patologia , Translocação Genética
9.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38003219

RESUMO

The gilthead seabream, one of the most important species in Mediterranean aquaculture, with an increasing status of exploitation in terms of production volume and aquafarming technologies, has become an important research topic over the years. The accumulation of knowledge from several studies conducted during recent decades on their functional and biological characteristics has significantly improved their aquacultural aspects, namely their reproductive success, survival, and growth. Despite the remarkable progress in the aquaculture industry, hatchery conditions are still far from ideal, resulting in frequent abnormalities at the beginning of intensive culture, entailing significant economic losses. Those deformities are induced during the embryonic and post-embryonic periods of life, and their development is still poorly understood. In the present review, we created a comprehensive synthesis that covers the various aspects of skeletal morphogenesis and anomalies in the gilthead seabream, highlighting the genetic, environmental, and nutritional factors contributing to bone deformities and emphasized the potential of the gilthead seabream as a model organism for understanding bone morphogenesis in both aquaculture and translational biological research. This review article addresses the existing lack in the literature regarding gilthead seabream bone deformities, as there are currently no comprehensive reviews on this subject.


Assuntos
Dourada , Animais , Dourada/genética , Aquicultura/métodos , Morfogênese
10.
Int J Mol Sci ; 24(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37958598

RESUMO

The morphology of the oral cavity of fish is related to their feeding habits. In this context, taste buds are studied for their ability to catch chemical stimuli and their cell renewal capacity. Vimentin RV202 is a protein employed as a marker for mesenchymal cells that can differentiate along different lineages and to self-renew, while Calretinin N-18 is employed as a marker of sensory cells, and ubiquitin is a protein crucial for guiding the fate of stem cells throughout development. In this study, a surface morphology investigation and an immunohistochemical analysis have been conducted. The results of the present study reveal, for the first time, the presence of Vimentin RV202 in a taste bud cell population of zebrafish. Some taste bud cells are just Vimentin RV202-immunoreactive, while in other cells Vimentin RV202 and Calretinin N-18 colocalize. Some taste buds are just reactive to Calretinin N-18. Vimentin RV202-immunoreactive cells have been observed in the connective layer and in the basal portion of the taste buds. The immunoreactivity of ubiquitin was restricted to sensory cells. Further studies are needed to elucidate the role of Vimentin RV202 in the maturation of taste bud cells, its potential involvement in the regeneration of these chemosensory organs, and its eventual synergic work with ubiquitin.


Assuntos
Papilas Gustativas , Vimentina , Animais , Calbindina 2/metabolismo , Papilas Gustativas/metabolismo , Ubiquitinas/metabolismo , Vimentina/metabolismo , Peixe-Zebra/metabolismo
11.
Life (Basel) ; 13(10)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37895432

RESUMO

Calcium-binding proteins (CaBPs) are members of a heterogeneous family of proteins able to buffer intracellular Ca2+ ion concentration. CaBPs are expressed in the central and peripheral nervous system, including a subpopulation of retinal neurons. Since neurons expressing different CaBPs show different susceptibility to degeneration, it could be hypothesized that they are not just markers of different neuronal subpopulations, but that they might be crucial in survival. CaBPs' ability to buffer Ca2+ cytoplasmatic concentration makes them able to defend against a toxic increase in intracellular calcium that can lead to neurodegenerative processes, including those related to aging. An emergent model for aging studies is the annual killifish belonging to the Nothobranchius genus, thanks to its short lifespan. Members of this genus, such as Nothobranchius guentheri, show a retinal stratigraphy similar to that of other actinopterygian fishes and humans. However, according to our knowledge, CaBPs' occurrence and distribution in the retina of N. guentheri have never been investigated before. Therefore, the present study aimed to localize Calretinin N-18, Parvalbumin, and S100 protein (S100p) in the N. guentheri retina with immunohistochemistry methods. The results of the present investigation demonstrate for the first time the occurrence of Calretinin N-18, Parvalbumin, and S100p in N. guentheri retina and, consequently, the potential key role of these CaBPs in the biology of the retinal cells. Hence, the suitability of N. guentheri as a model to study the changes in CaBPs' expression patterns during neurodegenerative processes affecting the retina related both to disease and aging can be assumed.

12.
Ann Anat ; 250: 152116, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37302430

RESUMO

BACKGROUND: Anorexia of aging, defined as a decrease in appetite and a preponderant loss of body weight occurring in late life, is one of the most common diseases affecting older people. The peptide hormone cholecystokinin (Cck) is known to play a key role in regulating food intake and satiety in higher vertebrates. In humans as well as in rats, an increased concentration of Cck was described as the basis of appetite loss in elderly. However, the role of increased plasma Cck concentrations in mediating the age-related decrease in appetite remains to be established. Although in vitro studies are an excellent resource for investigating aging, the use of a model organism that shares and imitates the human physiological processes guarantees a better understanding of the in vivo mechanisms. African annual fishes from the genus Nothobranchius are emerging as a prominent model organism in biogerontology and developmental biology due to their short captive lifespan. Therefore, in the current study, we aimed to investigate the possibility of using the genus Nothobranchius to model the anorexia of aging and their potential contribution to better understanding the pathway by which Cck induce appetite loss in older people providing a comparative/evolutionary localization of the current study model among the aging canonicals models, the morphology of its gastrointestinal tract and its Cck expression pattern. METHODS: The comparative/evolutionary investigation was conducted using the NCBI blastp (protein-protein BLAST) and NCBI Tree Viewer. The macroscopic morphology, histological features, ultrastructural organization of Nothobranchius rachovii gastrointestinal tract were investigated using stereomicroscope, Masson's trichrome and alcian blue-PAS staining, and transmission electron microscopy, respectively. The cck expression pattern was studied through immunofluorescence labeling, western blotting, and quantitative RT-PCR. RESULTS: The intestine was folded into different segments divided into an anterior intestine made of a rostral intestinal bulb and an intestinal annex of lower diameter, mid and posterior intestine. The gradual transition from the rostral intestinal bulb to the posterior intestine sections's epithelium is characterized by a gradual reduction in the striated muscular bundles, villi height, and goblet mucous cells count. The lining epithelium of the intestinal villi was characterized by a typical brush border enterocytes full of mitochondria. Moreover, Cck expression was detected in scattered intraepithelial cells concentrated in the anterior tract of the intestine. CONCLUSIONS: Our study introduces Nothobranchius rachovii as a model for anorexia of aging, giving the first bases on the gastrointestinal tract morphology and cck expression pattern. Future studies on young and elderly Notobranchius can divulge the contribution of cck in the mechanisms of anorexia associated with aging.


Assuntos
Anorexia , Gerociência , Humanos , Animais , Ratos , Idoso , Colecistocinina , Apetite/fisiologia , Envelhecimento/fisiologia
13.
Cells ; 12(2)2023 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-36672187

RESUMO

Over the past century, advances in biotechnology, biochemistry, and pharmacognosy have spotlighted flavonoids, polyphenolic secondary metabolites that have the ability to modulate many pathways involved in various biological mechanisms, including those involved in neuronal plasticity, learning, and memory. Moreover, flavonoids are known to impact the biological processes involved in developing neurodegenerative diseases, namely oxidative stress, neuroinflammation, and mitochondrial dysfunction. Thus, several flavonoids could be used as adjuvants to prevent and counteract neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Zebrafish is an interesting model organism that can offer new opportunities to study the beneficial effects of flavonoids on neurodegenerative diseases. Indeed, the high genome homology of 70% to humans, the brain organization largely similar to the human brain as well as the similar neuroanatomical and neurochemical processes, and the high neurogenic activity maintained in the adult brain makes zebrafish a valuable model for the study of human neurodegenerative diseases and deciphering the impact of flavonoids on those disorders.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Animais , Peixe-Zebra/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/metabolismo , Encéfalo/metabolismo
14.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674603

RESUMO

The incidence rates of light-induced retinopathies have increased significantly in the last decades because of continuous exposure to light from different electronic devices. Recent studies showed that exposure to blue light had been related to the pathogenesis of light-induced retinopathies. However, the pathophysiological mechanisms underlying changes induced by light exposure are not fully known yet. In the present study, the effects of exposure to light at different wavelengths with emission peaks in the blue light range (400-500 nm) on the localization of Calretinin-N18 (CaR-N18) and Calbindin-D28K (CaB-D28K) in adult zebrafish retina are studied using double immunofluorescence with confocal laser microscopy. CaB-D28K and CaR-N18 are two homologous cytosolic calcium-binding proteins (CaBPs) implicated in essential process regulation in central and peripheral nervous systems. CaB-D28K and CaR-N18 distributions are investigated to elucidate their potential role in maintaining retinal homeostasis under distinct light conditions and darkness. The results showed that light influences CaB-D28K and CaR-N18 distribution in the retina of adult zebrafish, suggesting that these CaBPs could be involved in the pathophysiology of retinal damage induced by the short-wavelength visible light spectrum.


Assuntos
Proteína G de Ligação ao Cálcio S100 , Peixe-Zebra , Animais , Calbindina 1 , Calbindina 2 , Peixe-Zebra/metabolismo , Calbindinas , Proteína G de Ligação ao Cálcio S100/metabolismo , Retina/metabolismo
15.
Ann Anat ; 244: 151985, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35914630

RESUMO

BACKGROUND: Taste buds, the morphofunctional units for taste perception, transduce gustatory stimuli using G protein-coupled receptors and a complex arrangement of ion channels, among which TRPV4, a member of the TRP superfamily. Studies on taste buds development on gilthead seabream are unknown, and the TRPV4 expression on fish taste cells studies were conducted only on zebrafish. METHODS: In our study, we have investigated the histological features of the gilthead seabream tongue dorsal surface from the earliest stage of development using Masson trichrome with aniline blue staining. Additionally, the TRPV4 expression pattern was studied by means of immunohistochemical labeling and quantitative RT-PCR. RESULTS: We have recorded for the first time on gilthead seabream lingual dorsal surface the presence of, stage-specific, three types of taste buds: type I, type II and type III in larvae, juveniles and adults respectively. At 40 days post-hatching, taste buds were mature-looking. TRPV4 expression was detected in a subpopulation of taste cells of larvae, juveniles, and adults. Furthermore, TRPV4 was expressed in the basal epithelial cells of the tongue at the larvae and juvenile stage, while this expression pattern was more diffused within all the epithelial cell layers in the adult. CONCLUSION: Our findings presume a taste sensory role of TRPV4 in the three stage-specific taste buds and oral epithelia of gilthead seabream. In addition to its sensory role on the epithelial cell layers, we hypothesize that TRPV4 is implicated in epithelial cells differentiation and membrane protection.


Assuntos
Dourada , Papilas Gustativas , Animais , Dourada/metabolismo , Canais de Cátion TRPV/metabolismo , Peixe-Zebra/metabolismo , Língua , Papilas Gustativas/metabolismo , Proteínas de Peixe-Zebra/metabolismo
16.
Animals (Basel) ; 12(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35739901

RESUMO

A morphological study of the alimentary tract, from the oropharyngeal cavity to the rectum, including the attached glands, of African bony-tongue, Heterotis niloticus (Cuvier, 1829) was carried out by gross anatomy, and light microscope analysis. This study aimed to give a deeper knowledge of the alimentary tract morphological features of this species of commercial interest. H. niloticus is distinguished by individual morphological characteristics showing a digestive tract similar to that of reptiles and birds. Within the oropharyngeal cavity, two tubular structures with digitiform ends are arranged on both lateral sides of the triangular tongue. The oropharyngeal cavity connects the stomach by a short esophagus. This latter is adapted to mechanical trituration, and it is divided into a pars glandularis and a thick-walled pars muscularis. The gizzard flows into the anterior intestine and two blind pyloric appendages, which exhibit specific functions, including immune defense for the presence of secondary lymphoid organs. The anterior intestine continues with the middle and posterior tracts up into the rectum. According to the histological observations, all regions of the alimentary tract have common structural features, typical of hollow organs, with differences in the mucosa structure that reflects the different functions of the apparatus, from mouth to anus. Within this study, we provided the first basis for future studies on optimizing rearing conditions, feed conversion ratio, and the digestive capacity, improving the growth performance of this species, and ensuring its conservation.

17.
Int J Mol Sci ; 23(9)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35563087

RESUMO

Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family and it is involved in several fundamental functions in the central and peripheral nervous systems, and in sensory organs. BDNF regulates the chemosensory systems of mammals and is consistently expressed in those organs. In zebrafish, the key role of BDNF in the biology of the hair cells of the inner ear and lateral line system has recently been demonstrated. However, only some information is available about its occurrence in the olfactory epithelium, taste buds, and cutaneous isolated chemosensory cells. Therefore, this study was undertaken to analyze the involvement of BDNF in the chemosensory organs of zebrafish during the larval and adult stages. To identify cells displaying BDNF, we compared the cellular pattern of BDNF-displaying cells with those immunoreactive for calretinin and S100 protein. Our results demonstrate the localization of BDNF in the sensory part of the olfactory epithelium, mainly in the ciliated olfactory sensory neurons in larvae and adult zebrafish. Intense immunoreaction for BDNF was also observed in the chemosensory cells of oral and cutaneous taste buds. Moreover, a subpopulation of olfactory sensory neurons and chemosensory cells of olfactory rosette and taste bud, respectively, showed marked immunopositivity for calcium-binding protein S100 and calretinin. These results demonstrate the possible role of BDNF in the development and maintenance of olfactory sensory neurons and sensory cells in the olfactory epithelium and taste organs of zebrafish during all stages of development.


Assuntos
Papilas Gustativas , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Calbindina 2/metabolismo , Larva/metabolismo , Mamíferos/metabolismo , Mucosa Olfatória/metabolismo , Proteínas S100/metabolismo , Papilas Gustativas/metabolismo , Peixe-Zebra/metabolismo
18.
Int J Mol Sci ; 23(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35269763

RESUMO

The brain-derived neurotrophic factor (BDNF) was discovered in the last century, and identified as a member of the neurotrophin family. BDNF shares approximately 50% of its amino acid with other neurotrophins such as NGF, NT-3 and NT-4/5, and its linear amino acid sequences in zebrafish (Danio rerio) and human are 91% identical. BDNF functions can be mediated by two categories of receptors: p75NTR and Trk. Intriguingly, BDNF receptors were highly conserved in the process of evolution, as were the other NTs' receptors. In this review, we update current knowledge about the distribution and functions of the BDNF-TrkB system in the sensory organs of zebrafish. In fish, particularly in zebrafish, the distribution and functions of BDNF and TrkB in the brain have been widely studied. Both components of the system, associated or segregated, are also present outside the central nervous system, especially in sensory organs including the inner ear, lateral line system, retina, taste buds and olfactory epithelium.


Assuntos
Orelha Interna , Papilas Gustativas , Animais , Fator Neurotrófico Derivado do Encéfalo , Neurotrofina 3 , Receptor trkB , Receptores de Fator de Crescimento Neural/genética , Peixe-Zebra
19.
Anat Histol Embryol ; 51(1): 103-111, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34820882

RESUMO

The blackspot seabream (Pagellus bogaraveo, Brünnich, 1768) is an omnivorous, predominantly carnivorous fish. In aquaculture, it is fed with pellets rich in proteins and fat. The morphological and functional aspects of the fish tongue, the feeding modality and the tasting capacity are strictly related. Therefore, the aim of this study was to describe by scanning electron, light and confocal laser microscopy, the morphological characteristics of the tongue in this species. It showed an apex, a body and a root. There were rows of teeth on the edges of the mouth and taste pores on all the tongue dorsal surface with folds and furrows. In addition, body and root showed several fungiform-like papillae in the mucosa of the folds, covered by a weakly keratinized stratified squamous epithelium, can be observed. The papillae were innervated by S100 positive fibres. In the apex, a mesenchymal tissue with vimentin positive star-shaped stem cells was evident. The results could give a support for a wider use of the blackspot seabream as a farmed species, considering the morphological data as correlated with the potentiality of food discrimination. This provides a basis for possible applications in feeding strategies. The presence, localization and characteristics of the mesenchymal stem cells, as seen also in previous studies, could represent a further basis for future applications in clinical trials.


Assuntos
Dourada , Papilas Gustativas , Animais , Microscopia Confocal/veterinária , Microscopia Eletrônica de Varredura/veterinária , Língua
20.
Int J Exp Pathol ; 103(1): 13-22, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34725870

RESUMO

Inflammatory bowel diseases (IBDs) are a group of inflammatory conditions of the colon and small intestine, including Crohn's disease and ulcerative colitis. Since Danio rerio is a promising animal model to study gut function, we developed a soy-dependent model of intestinal inflammation in adult zebrafish. The soya bean meal diet was given for 4 weeks and induced an inflammatory process, as demonstrated by morphological changes together with an increased percentage of neutrophils infiltrating the intestinal wall, which developed between the second and fourth week of treatment. Pro-inflammatory genes such as interleukin-1beta, interleukin-8 and tumour necrosis factor alpha were upregulated in the second week and anti-inflammatory genes such as transforming growth factor beta and interleukin-10. Interestingly, an additional expression peak was found for interleukin-8 at the fourth week. Neuronal genes, OTX1 and OTX2, were significantly upregulated in the first two  weeks, compatible with the development of the changes in the gut wall. As for the genes of the p53 family such as p53, DNp63 and p73, a statistically significant increase was observed after two weeks of treatment compared with controls. Interestingly, DNp63 and p73 were shown an additional peak after four weeks. Our data demonstrate that soya bean meal diet negatively influences intestinal morphology and immunological function in adult zebrafish showing the features of acute inflammation. Data observed at the fourth week of treatment may suggest initiation of chronic inflammation. Adult zebrafish may represent a promising model to better understand the mechanisms of food-dependent intestinal inflammation.


Assuntos
Dieta , Glycine max , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Colo/metabolismo , Colo/patologia , Modelos Animais de Doenças , Inflamação/patologia , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Intestinos/metabolismo , Intestinos/patologia , Fator de Necrose Tumoral alfa/metabolismo , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA