Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Oncol Rep ; 44(5): 2275-2287, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32901889

RESUMO

Information on the mechanisms that are associated with tumor resistance has the potential to provide the fundamental basis for novel therapeutic strategies. In glioblastoma (GBM), predictive biomarkers of cellular responses to temozolomide (TMZ) combined with poly­ADP­ribose polymerase inhibitor (PARPi) remain largely unidentified. In this context, the influence of MGMT (O6­methylguanine DNA methyltransferase) and PTEN (phosphatase and tensin homologue deleted on chromosome ten) has been studied in addition to the occurrence of synthetic lethality involving PTEN and PARPi. The present study investigated whether PARP­1 inhibition by NU1025 may increase the cytotoxicity of TMZ­induced lesions in GBM cells, and whether these mechanisms can be influenced by MGMT and PTEN status. The impact of PTEN deficiency in repair pathways, and the effects of PARP­1 inhibition and PTEN silencing, in terms of synthetic lethality, were also assessed. NU1025 combined with TMZ effectively sensitized TMZ­resistant cells (T98G PTEN­mutated and LN18 PTEN­wild­type) and TMZ­sensitive cells (U251MG PTEN­mutated), in contrast to NU1025 alone. However, the sensitizing effects were not observed in U87MG (PTEN­mutated) cells, suggesting that specific genetic alterations may influence the response to drug treatment. The sensitizing effects occurred independently of MGMT activity, which was evaluated in O6­BG­treated cells. PTEN silencing using small interfering (si)RNA did not sensitize PTEN­proficient cells to TMZ + NU1025, or NU1025 alone, indicating an absence of synthetic lethality. The responses to TMZ + NU1025 involved antiproliferative activity, G2/M arrest, double strand breaks and the induction of apoptosis. Following 20 days of recovery after three consecutive days of TMZ treatment, TMZ­resistant cells were observed. However, when TMZ was combined with NU1025, the viability of T98G and LN18 cells was extremely decreased, indicating a lethal drug combination. Therefore, independently of MGMT proficiency and PTEN status, TMZ combined with PARPi may be a promising strategy that can be used to overcome TMZ acquired resistance in GBM cells.


Assuntos
Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Glioblastoma/tratamento farmacológico , PTEN Fosfo-Hidrolase/genética , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Quinazolinas/farmacologia , Temozolomida/farmacologia , Proteínas Supressoras de Tumor/metabolismo , Antineoplásicos Alquilantes/farmacologia , Apoptose , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Mutação , Poli(ADP-Ribose) Polimerase-1/metabolismo
2.
Neurotoxicology ; 57: 291-297, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27793617

RESUMO

Biochemically, Alzheimers disease (AD) is characterized by the presence of abnormal deposition of beta amyloid peptide (Aß(1-42)), which is generated by proteolytic processing from its precursor, the amyloid precursor protein (APP) in a non-physiological pathway. The presence of Aß(1-42) in the brain is strongly correlated with cognitive impairment, cholinergic deficiency, bioenergetics disruption, cell death and DNA damage. Galanthamine is an acetylcholinesterase inhibitor (AChEI) used to symptomatic treatment of Alzheimers disease (AD). Several studies have showed that galanthamine has antioxidant properties, anti-apoptotic action and also promotes neurogenesis; however, it is unknown whether galanthamine may present protection mechanisms against Aß(1-42)-induced genomic instability. To understand the mechanisms of this neuroprotection, we studied the effects of galanthamine on the cell toxicity and DNA strand breaks induced by Aß(1-42) using a set of biomarkers such as clonogenic assay, cytokinesis block micronucleus cytome (CBNM-cyt) and comet assay. The results showed that galanthamine treatments were capable to significantly reduce the Aß(1-42)-induced cytotoxicity and genotoxicity. In conclusion, this study demonstrated that in addition to inhibition of acetylcholinesterase (AChE), galanthamine exerts antigenotoxic properties. This relevant property of galanthamine is worthwhile exploring further which may improve the development of new diseases-modifying agents.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Morte Celular/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Galantamina/farmacologia , Fragmentos de Peptídeos/toxicidade , Análise de Variância , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaio de Unidades Formadoras de Colônias , Ensaio Cometa , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Humanos , Mitocôndrias/efeitos dos fármacos , Neuroblastoma/patologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-26520369

RESUMO

Temozolomide (TMZ) is widely used for patients with glioblastoma (GBM); however, tumor cells frequently exhibit drug-resistance. Base excision repair (BER) has been identified as a possible mediator of TMZ resistance, and an attractive approach to sensitizing cells to chemotherapy. Human apurinic/apyrimidinic endonuclease/redox factor-1 (APE1) is an essential enzyme with a role in the BER pathway by repairing abasic sites, and it also acts as a reduction factor, maintaining transcription factors in an active reduced state. Thus, we aimed to investigate whether the down-regulation of APE1 expression by siRNA can interfere with the resistance of GBM to TMZ, being evaluated by several cellular and molecular parameters. We demonstrated that APE1 knockdown associated with TMZ treatment efficiently reduced cell proliferation and clonogenic survival of resistant cells (T98G), which appears to be a consequence of increased DNA damage, S-phase arrest, and H2AX phosphorylation, resulting in apoptosis induction. On the contrary, for those assays, the sensitization effects of APE1 silencing plus TMZ treatment did not occur in the TMZ-sensitive cell line (U87MG). Interestingly, TMZ-treatment and APE1 knockdown significantly reduced cell invasion in both cell lines, but TMZ alone did not reduce the invasion capacity of U87MG cells, as observed for T98G. We also found that VEGF expression was down-regulated by TMZ treatment in T98G cells, regardless of APE1 knockdown, but U87MG showed a different response, since APE1 silencing counteracted VEGF induction promoted by TMZ, suggesting that the APE1-redox function may play an indirect role, depending on the cell line. The present results support the contribution of BER in the GBM resistance to TMZ, with a greater effect in TMZ-resistant, compared with TMZ-sensitive cells, emphasizing that APE1 can be a promising target for modifying TMZ tolerance. Furthermore, genetic characteristics of tumor cells should be considered as critical information to select an appropriate therapeutic strategy.


Assuntos
Antineoplásicos Alquilantes/farmacologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Dacarbazina/análogos & derivados , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/antagonistas & inibidores , Dacarbazina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Glioblastoma/tratamento farmacológico , Humanos , RNA Interferente Pequeno/metabolismo , Temozolomida
4.
Clin Exp Med ; 13(1): 75-80, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22080235

RESUMO

Cervical adenocarcinoma is one of the most common gynecological malignancies. Despite the improvements in multimodality treatment, advanced disease is still associated with a significantly poor prognosis making the search for more effective therapeutic agents imperative. BI 2536, an unambiguous inhibitor of Polo-like kinase 1 (PLK1), has shown anticancer activity in a variety of tumor cell types. Herein, we present more evidence of the antiproliferative effects of this drug on HeLa cells. Nanomolar concentrations (10-100 nmol/l) of the drug significantly decreased cell proliferation and clonogenic capacity. Our results also demonstrate that inhibition of PLK1 promoted G2/M arrest and resulted in a dramatic increase in the mitotic index after 24 h of treatment. Apoptosis onset was evinced by the accumulation of a sub-G1 population as well as by a significant increase in caspase-3 activity at longer periods of exposure. Taken together, our results reinforce the prospect of directing against PLK1 as a potential therapeutic target to be evaluated in different preclinical models for cervical carcinoma.


Assuntos
Antineoplásicos/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pteridinas/metabolismo , Apoptose , Ciclo Celular/efeitos dos fármacos , Feminino , Células HeLa , Humanos , Quinase 1 Polo-Like
5.
Clin Exp Med ; 13(4): 279-88, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22828727

RESUMO

Chemoresistance represents a major obstacle to successful treatment for malignant glioma with temozolomide. N (7)-methyl-G and N (3)-methyl-A adducts comprise more than 80 % of DNA lesions induced by temozolomide and are processed by the base excision repair, suggesting that the cellular resistance could be caused, in part, by this efficient repair pathway, although few studies have focused on this subject. The aim of this study was to evaluate the cellular responses to temozolomide treatment associated with methoxyamine (blocker of base excision repair) in glioblastoma cell lines, in order to test the hypothesis that the blockage of base excision repair pathway might sensitize glioblastoma cells to temozolomide. For all the tested cell lines, only T98G showed significant differences between temozolomide and temozolomide plus methoxyamine treatment, observed by reduced survival rates, enhanced the levels of DNA damage, and induced an arrest at G2-phase. In addition, ~10 % of apoptotic cells (sub-G1 fraction) were observed at 48 h. Western blot analysis demonstrated that APE1 and FEN1 presented a slightly reduced expression levels under the combined treatment, probably due to AP sites blockade by methoxyamine, thus causing a minor requirement of base excision repair pathway downstream to the AP removal by APE1. On the other hand, PCNA expression in temozolomide plus methoxyamine-treated cells does not rule out the possibility that such alteration might be related to the blockage of cell cycle (G2-phase), as observed at 24 h of recovery time. The results obtained in the present study demonstrated the efficiency of methoxyamine to overcome glioblastoma resistance to temozolomide treatment.


Assuntos
Alquilantes/farmacologia , Antineoplásicos/farmacologia , Dacarbazina/análogos & derivados , Hidroxilaminas/farmacologia , Neuroglia/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Dacarbazina/farmacologia , Glioblastoma/tratamento farmacológico , Humanos , Temozolomida
6.
Anticancer Drugs ; 22(10): 995-1001, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21822121

RESUMO

Osteosarcoma is the most common primary malignant tumor of bone, which frequently occurs in the second decade of life. Despite the improvements in neoadjuvant chemotherapy, the outcome of patients with chemoresistant or metastatic tumors is still poor. Therefore, there is a need for the development of more efficient therapeutic agents. BI 2536, an innovative selective inhibitor of Polo-like kinase 1, has shown anticancer potential promoting mitotic arrest and apoptosis in a variety of tumor cells, including osteosarcoma. Here, we present more evidence of the antiproliferative effects of BI 2536 on HOS and MG-63 osteosarcoma cell lines. Our results showed that nanomolar concentrations (10, 50, and 100 nmol/l) of the drug significantly decreased cell proliferation and clonogenic capacity, inducing mitotic arrest and aneuploidy. Interestingly, although BI 2536 mediated a moderate increase of apoptosis after 48 h in HOS cells, no increased caspase-3 activity was detected for MG-63 cells. In contrast to previous studies, we show that perturbation of normal mitotic progression by BI 2536 in these osteosarcoma cell lines results in caspase-independent mitotic catastrophe followed by necrosis. Our findings reinforce the likelihood of directing against Polo-like kinase 1 as a therapeutic option in the treatment of osteosarcoma.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pteridinas/farmacologia , Antineoplásicos/farmacologia , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Instabilidade Cromossômica , Relação Dose-Resposta a Droga , Humanos , Mitose/efeitos dos fármacos , Osteossarcoma/genética , Quinase 1 Polo-Like
7.
Mutagenesis ; 24(2): 153-60, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19028982

RESUMO

The successful treatment of paediatric malignancies by multimodal therapy has improved outcomes for children with cancer, especially those with acute lymphoblastic leukaemia (ALL). Second malignant neoplasms, however, represent a serious complication after treatment. Depending on dosage, 2-12% of patients treated with topoisomerase II inhibitors and/or alkylating agents develop treatment-related acute myeloid leukaemia characterized by translocations at 11q23. Our goal was to study MLL rearrangements in peripheral lymphocytes using cytogenetic and molecular methods in order to evaluate the late effects of cancer therapy in patients previously treated for childhood ALL. Chromosomal rearrangements at 11q23 were analysed in cytogenetic preparations from 49 long-term ALL survivors and 49 control individuals. Patients were subdivided depending on the inclusion or omission of topoisomerase II inhibitors (VP-16 and/or VM-26) in their treatment protocol. The statistical analysis showed significant (P = 0.007) differences between the frequency of translocations observed for the groups of patients and controls. These differences were also significant (P = 0.006) when the groups of patients (independent of the inclusion of topoisomerase II inhibitors) and controls were compared (P = 0.006). The frequencies of extra signals, however, did not differ between groups of patients and controls. Several MLL translocations were detected and identified by inverse polymerase chain reaction, followed by cloning and sequencing. Thirty-five patients (81%) presented putative translocations; among those, 91% corresponded with t(4;11) (q21;q23), while the other 9% corresponded with t(11;X), t(8;11)(q23;q23) and t(11;16). Our results indicate an increase in MLL aberrations in childhood ALL survivors years after completion of therapy. The higher frequency in this cohort might be associated with therapy using anti-tumoural drugs, independent of the inclusion of topoisomerase II inhibitors. Even though the biological significance of these rearrangements needs further investigation, they demonstrate a degree of genome instability, indicating the relevance of cytogenetic and molecular studies during the follow-up of patients in complete clinical remission.


Assuntos
Análise Citogenética , Rearranjo Gênico , Proteína de Leucina Linfoide-Mieloide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Sobreviventes , Adolescente , Adulto , Sequência de Bases , Estudos de Casos e Controles , Criança , Pré-Escolar , Cromossomos Humanos Par 11/genética , Etoposídeo/uso terapêutico , Humanos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Teniposídeo/uso terapêutico , Translocação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA