Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38255773

RESUMO

The organic sulfur-containing compounds glucosinolates (GSLs) and the novel gasotransmitter H2S are known to have cardioprotective effects. This study investigated the antioxidant effects and H2S-releasing potential of three GSLs ((3E)-4-(methylsulfanyl)but-3-enyl GSL or glucoraphasatin, 4-hydroxybenzyl GSL or glucosinalbin, and (RS)-6-(methylsulfinyl)hexyl GSL or glucohesperin) in rat cardiac cells. It was found that all three GSLs had no effect on cardiac cell viability but were able to protect against H2O2-induced oxidative stress and cell death. NaHS, a H2S donor, also protected the cells from H2O2-stimulated oxidative stress and cell death. The GSLs alone or mixed with cysteine, N-acetylcysteine, glutathione, H2O2, iron and pyridoxal-5'-phosphate, or mouse liver lysates did not induce H2S release. The addition of GSLs also did not alter endogenous H2S levels in cardiac cells. H2O2 significantly induced cysteine oxidation in the cystathionine gamma-lyase (CSE) protein and inhibited the H2S production rate. In conclusion, this study found that the three tested GSLs protect cardiomyocytes from oxidative stress and cell death but independently of H2S signaling.


Assuntos
Antioxidantes , Glucosinolatos , Camundongos , Animais , Ratos , Antioxidantes/farmacologia , Glucosinolatos/farmacologia , Peróxido de Hidrogênio , Miócitos Cardíacos , Acetilcisteína , Fosfato de Piridoxal
2.
J Agric Food Chem ; 70(4): 1134-1147, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35061395

RESUMO

The glucosinolate (GSL) profiles of four Limnanthaceae species, including the oil crop Limnanthes alba (meadowfoam), were investigated by an ultrahigh-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC-QToF-MS/MS) analysis of desulfoGSLs after desulfation of native GSLs, supplemented by NMR of desulfated 2-hydroxy-2-methylpropylGSL and 3-methoxybenzylGSL. Leaves, roots, and seeds were investigated, providing an overview of biosynthetic capabilities in the genera Floerkea and Limnanthes. Methoxyl groups on benzylGSLs were in meta but not para positions; two 3,5-disubstituted benzylGSLs are tentatively proposed. 2-Hydroxy-2-methylpropylGSL was accompanied by an isomer that was not a previously reported GSL. The combined GSL profile of the family included GSLs derived from valine, leucine, isoleucine, phenylalanine, and tyrosine, and possibly methionine and tryptophan. Substituted indole GSLs and GSLs derived from chain-elongated amino acids or alanine were searched for but not detected. Hypothetic glycosides of GSLs were detected at low levels. Based on biochemical interpretation, we suggest biosynthetic schemes and gene families (CYP79C, GSOH) relevant for tailoring GSL profiles in Limnanthes crops.


Assuntos
Glucosinolatos , Magnoliopsida , Cromatografia Líquida de Alta Pressão , Humanos , Sementes , Espectrometria de Massas em Tandem
3.
Molecules ; 26(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34500622

RESUMO

Glucosinolates (GSLs) from Lepidium graminifolium L. were analyzed qualitatively and quantitatively by their desulfo-counterparts using UHPLC-DAD-MS/MS technique and by their volatile breakdown products-isothiocyanates (ITCs) using GC-MS analysis. Thirteen GSLs were identified with arylaliphatic as the major ones in the following order: 3-hydroxybenzyl GSL (glucolepigramin, 7), benzyl GSL (glucotropaeolin, 9), 3,4,5-trimethoxybenzyl GSL (11), 3-methoxybenzyl GSL (glucolimnanthin, 12), 4-hydroxy-3,5-dimethoxybenzyl GSL (3,5-dimethoxysinalbin, 8), 4-hydroxybenzyl GSL (glucosinalbin, 6), 3,4-dimethoxybenzyl GSL (10) and 2-phenylethyl GSL (gluconasturtiin, 13). GSL breakdown products obtained by hydrodistillation (HD) and CH2Cl2 extraction after hydrolysis by myrosinase for 24 h (EXT) as well as benzyl ITC were tested for their cytotoxic activity using MTT assay. Generally, EXT showed noticeable antiproliferative activity against human bladder cancer cell line UM-UC-3 and human glioblastoma cell line LN229, and can be considered as moderately active, while IC50 of benzyl ITC was 12.3 µg/mL, which can be considered as highly active.


Assuntos
Proliferação de Células/efeitos dos fármacos , Glucosinolatos/química , Glucosinolatos/farmacologia , Lepidium/química , Linhagem Celular Tumoral , Cromatografia Gasosa-Espectrometria de Massas/métodos , Glioblastoma/tratamento farmacológico , Humanos , Hidrólise , Isotiocianatos/química , Isotiocianatos/farmacologia , Espectrometria de Massas em Tandem/métodos , Tiocianatos/química , Tiocianatos/farmacologia , Tioglucosídeos/química , Tioglucosídeos/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico
4.
Nat Prod Res ; 35(3): 494-498, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31242759

RESUMO

The glucosinolate (GSL) profiles (inflorescence, stem, root, and fruit) of the wild-growing plant Lepidium graminifolium L. (Brassicaceae) from Croatia was established by LC-MS analysis. During this investigation, we confirmed the presence of benzyl- (1), 3-methoxybenzyl- (2), 4-hydroxybenzyl- (4), 4-methoxyindol-3-ylmethyl- (7) GSLs and reported for the first time in the plant the presence of (2 R)-hydroxybut-3-enyl- (11), (2S)-hydroxybut-3-enyl- (12), but-3-enyl- (13), and 2-phenylethyl- (14) GSLs. Finally, 3-hydroxybenzyl GSL (3) was isolated for the first time from L. graminifolium inflorescence and characterised by spectroscopic data interpretation.


Assuntos
Glucosinolatos/química , Lepidium/química , Cromatografia Líquida de Alta Pressão , Croácia , Frutas/química , Glucosinolatos/isolamento & purificação , Inflorescência/química , Raízes de Plantas/química , Caules de Planta/química , Espectrometria de Massas por Ionização por Electrospray
5.
Eur J Pharm Biopharm ; 154: 290-296, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32717389

RESUMO

Dynantin is a potent and selective synthetic polypeptide kappa opioid receptor antagonist which has potential antidepressant and anxiolytic-like therapeutic applications, however its clinical development has been hampered by plasma stability issues and poor penetration of the blood brain barrier. Targeted liposome delivery systems represent a promising and non-invasive approach to improving the delivery of therapeutic agents across the blood brain barrier. As part of our work focused on targeted drug delivery, we have developed a novel mannosylated liposome system. Herein, we investigate these glycoliposomes for the targeted delivery of dynantin to the central nervous system. Cholesterol was tested and optimized as a formulation excipient, where it improved particle stability as measured via particle size, entrapment and ex vivo plasma stability of dynantin. The in vitro PRESTO-TANGO assay system was used to confirm that glycoliposomal entrapment did not impact the affinity or activity of the peptide at its receptor. Finally, in vivo distribution studies in mice showed that the mannosylated glycoliposomes significantly improved delivery of dynantin to the brain. Overall, the results clearly demonstrate the potential of our glycoliposomes as a targeted delivery system for therapeutic agents of the central nervous system.


Assuntos
Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Manose/metabolismo , Antagonistas de Entorpecentes/metabolismo , Receptores Opioides kappa/antagonistas & inibidores , Receptores Opioides kappa/metabolismo , Administração Intranasal , Animais , Encéfalo/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Lipossomos , Manose/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Antagonistas de Entorpecentes/administração & dosagem
6.
Molecules ; 25(6)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178357

RESUMO

The addictive nature of nicotine is likely the most significant reason for the continued prevalence of tobacco smoking despite the widespread reports of its negative health effects. Nicotine vaccines are an alternative to the currently available smoking cessation treatments, which have limited efficacy. However, the nicotine hapten is non-immunogenic, and successful vaccine formulations to treat nicotine addiction require both effective adjuvants and delivery systems. The immunomodulatory properties of short, non-natural peptide sequences not found in human systems and their ability to improve vaccine efficacy continue to be reported. The aim of this study was to determine if small "non-natural peptides," as part of a conjugate nicotine vaccine, could improve immune responses. Four peptides were synthesized via solid phase methodology, purified, and characterized. Ex vivo plasma stability studies using RP-HPLC confirmed that the peptides were not subject to proteolytic degradation. The peptides were formulated into conjugate nicotine vaccine candidates along with a bacterial derived adjuvant vaccine delivery system and chitosan as a stabilizing compound. Formulations were tested in vitro in a dendritic cell line to determine the combination that would elicit the greatest 1L-1ß response using ELISAs. Three of the peptides were able to enhance the cytokine response above that induced by the adjuvant delivery system alone. In vivo vaccination studies in BALB/c mice demonstrated that the best immune response, as measured by nicotine-specific antibody levels, was elicited from the conjugate vaccine structure, which included the peptide, as well as the other components. Isotype analyses highlighted that the peptide was able to shift immune response toward being more humorally dominant. Overall, the results have implications for the use of non-natural peptides as adjuvants not only for the development of a nicotine vaccine but also for use with other addictive substances and conventional vaccination targets as well.


Assuntos
Nicotina/imunologia , Transtornos Relacionados ao Uso de Substâncias/imunologia , Tabagismo/imunologia , Vacinas de Subunidades Antigênicas/farmacologia , Adjuvantes Imunológicos/farmacologia , Animais , Cromatografia Líquida de Alta Pressão , Sistemas de Liberação de Medicamentos , Haptenos/efeitos dos fármacos , Haptenos/imunologia , Humanos , Imunidade/efeitos dos fármacos , Imunidade/imunologia , Interleucina-1beta/genética , Camundongos , Nicotina/metabolismo , Peptídeos/imunologia , Peptídeos/farmacologia , Transtornos Relacionados ao Uso de Substâncias/genética , Transtornos Relacionados ao Uso de Substâncias/patologia , Transtornos Relacionados ao Uso de Substâncias/prevenção & controle , Tabagismo/genética , Tabagismo/prevenção & controle , Vacinas Conjugadas/imunologia , Vacinas Conjugadas/farmacologia , Vacinas de Subunidades Antigênicas/imunologia
7.
Carbohydr Res ; 488: 107898, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31918339

RESUMO

The glucosinolate (GSL) profiles of wild-growing plants from the genus Hesperis, i.e. Hesperis laciniata All. (leaf, stem, flower, and root) from Croatia and Hesperis matronalis L. (leaf, stem, flower, seed, and root) from Canada, were established by LC-MS. During this investigation, 5-(methylsulfanyl)pentyl- (3), 6-(methylsulfanyl)hexyl- (4), 6-(methylsulfinyl)hexyl- (6), and 4'-α-l-rhamnopyranosyloxybenzyl- (17) GSLs were identified. In addition, the presence of 7-(methylsulfinyl)heptyl GSL (18), hydroxy-(α-l-rhamnopyranosyloxy)benzyl GSL, and of one d-apiosylated analogue of 17 were suggested. Moreover, one new GSL, 4'-O-ß-d-apiofuranosylglucomatronalin (19) was isolated from H. laciniata (flower, steam and leaf) and characterized by spectroscopic data interpretation. Finally, we report the presence of 3, 4, 6, 19, glucosinalbin (12), and 4-hydroxyglucobrassicin (20) in H. matronalis and hypothesize the presence of glucomatronalin (13) and 3-hydroxy-6-(methylsulfanyl)hexyl GSL (21).


Assuntos
Brassicaceae/química , Glucosinolatos/análise , Extratos Vegetais/análise , Canadá , Cromatografia Líquida , Croácia , Glucosinolatos/química , Espectrometria de Massas , Estrutura Molecular , Extratos Vegetais/química , Folhas de Planta/química , Raízes de Plantas/química , Sementes/química
8.
Nat Prod Res ; 34(19): 2847-2851, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30938167

RESUMO

The glucosinolate (GL) profiles in leaf and stem of Rorippa sarmentosa (G.Forst. ex DC.) J.F.Macbr., Lepidium bidentatum Montin var. bidentatum, and Capparis spinosa subsp. cordifolia (Lam.) Fici indigenous to French Polynesia were investigated for the first time using LC-MS analysis. In the present study, we have established the presence of 8 known GLs in R. sarmentosa: 4-(methylsulfinyl)butyl- (1), but-3-enyl- (2), 5-(methylsulfinyl)pentyl- (3), 6-(methylsulfinyl)hexyl- (4), indol-3-ylmethyl- (6), 2-phenylethyl- (7), 8-(methylsulfinyl)octyl- (8), and 9-(methylsulfinyl)nonyl- (9) GLs. We have also tentatively identified for the first time the presence in R. sarmentosa of 7-(methylsulfinyl)heptyl GL (5). In addition, we have identified two known GLs in L. bidentatum var. bidentatum: benzyl- (10) and 4-methoxybenzyl- (11) GLs. Finally, the known methyl GL (12) was shown to be largely predominant in C. spinosa subsp. cordifolia.


Assuntos
Glucosinolatos/análise , Magnoliopsida/química , Capparis/química , Cromatografia Líquida , Glucosinolatos/química , Espectrometria de Massas , Estrutura Molecular , Folhas de Planta/química , Caules de Planta/química , Polinésia
9.
Nat Prod Res ; 34(8): 1163-1166, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30663352

RESUMO

The glucosinolate (GL) profiles of wild and cultivated Brassica montana Pourret (seed, stem, leaf, root) from southern France were established using LC-MS analysis. In this investigation we have confirmed the presence of 9 known GLs: but-3-enyl- (1), prop-2-enyl- (2), pent-4-enyl- (3), (2R)-2-hydroxybut-3-enyl- (4), 4-hydroxyindol-3-ylmethyl- (5), 4-(methylsulfinyl)butyl- (6), 4-(methylsulfanyl)butyl- (7), 1-methoxyindol-3-ylmethyl- (8), and indol-3-ylmethyl (9) GL. In addition, we tentatively identified for the first time the presence in the plant of 1-methylpropyl GL (10) in all plant parts. In addition, we have pointed out differences in GL profiles between plant organs and between wild and cultivated B. montana.


Assuntos
Brassicaceae/química , Glucosinolatos/isolamento & purificação , Brassica/química , Cromatografia Líquida/métodos , França , Espectrometria de Massas/métodos , Folhas de Planta/química , Sementes/química
10.
Phytochemistry ; 169: 112100, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31771793

RESUMO

The glucosinolates (GSLs) is a well-defined group of plant metabolites characterized by having an S-ß-d-glucopyrano unit anomerically connected to an O-sulfated (Z)-thiohydroximate function. After enzymatic hydrolysis, the sulfated aglucone can undergo rearrangement to an isothiocyanate, or form a nitrile or other products. The number of GSLs known from plants, satisfactorily characterized by modern spectroscopic methods (NMR and MS) by mid-2018, is 88. In addition, a group of partially characterized structures with highly variable evidence counts for approximately a further 49. This means that the total number of characterized GSLs from plants is somewhere between 88 and 137. The diversity of GSLs in plants is critically reviewed here, resulting in significant discrepancies with previous reviews. In general, the well-characterized GSLs show resemblance to C-skeletons of the amino acids Ala, Val, Leu, Trp, Ile, Phe/Tyr and Met, or to homologs of Ile, Phe/Tyr or Met. Insufficiently characterized, still hypothetic GSLs include straight-chain alkyl GSLs and chain-elongated GSLs derived from Leu. Additional reports (since 2011) of insufficiently characterized GSLs are reviewed. Usually the crucial missing information is correctly interpreted NMR, which is the most effective tool for GSL identification. Hence, modern use of NMR for GSL identification is also reviewed and exemplified. Apart from isolation, GSLs may be obtained by organic synthesis, allowing isotopically labeled GSLs and any kind of side chain. Enzymatic turnover of GSLs in plants depends on a considerable number of enzymes and other protein factors and furthermore depends on GSL structure. Identification of GSLs must be presented transparently and live up to standard requirements in natural product chemistry. Unfortunately, many recent reports fail in these respects, including reports based on chromatography hyphenated to MS. In particular, the possibility of isomers and isobaric structures is frequently ignored. Recent reports are re-evaluated and interpreted as evidence of the existence of "isoGSLs", i.e. non-GSL isomers of GSLs in plants. For GSL analysis, also with MS-detection, we stress the importance of using authentic standards.


Assuntos
Glucosinolatos , Plantas/metabolismo , Glucosinolatos/síntese química , Glucosinolatos/química , Glucosinolatos/metabolismo , Estrutura Molecular , Plantas/química
11.
Heliyon ; 5(8): e02251, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31440598

RESUMO

Flaxseed oil is widely recognized for its exceptional nutritional value, high concentration of fiber-based lignans and large amounts of ω-fatty acids. It is one of a generic group of functional foods that is often taken by cancer patients as a potential treatment. We have examined the anti-cancer effects of flaxseed oil by studying its direct effects on cancer cell growth in vitro. Treatment of a variety of cancer cell lines with flaxseed oil decreased their growth in a dose-dependent manner while non-malignant cell lines showed small increases in cell growth. Cells treated with a mixture of fatty acids, including α-linolenic acid, docosahexaenoic acid, and eicosapentaenoic acid and lignans including enterodiol and enterolactone was also able to decrease the growth of cancer cells. Treatment of B16-BL6 murine melanoma and MCF-7 breast cancer cells with flaxseed oil induced apoptosis as determined by changes in cell morphology, annexin V staining, DNA fragmentation and/or caspase activation. In addition, treatment with flaxseed oil also disrupted mitochondrial function in B16-BL6 and MCF-7 cells. These results indicate that flaxseed oil can specifically inhibit cancer cell growth and induce apoptosis in some cancer cells and suggests it has further potential in anti-cancer therapy.

12.
Chem Biodivers ; 16(4): e1800661, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30714673

RESUMO

The cultivated Lepidium latifolium L. was investigated to decipher its glucosinolate profile, antimicrobial, and cytotoxic activities. HPLC/ESI-MS analyses of the intact glucosinolates and GC/MS analysis of their hydrolysis products showed the presence of sinigrin (1), glucocochlearin (2), glucotropaeolin (3), and 4-methoxyglucobrassicin (4). Hydrodistillate, extract, and allyl isothiocyanate, the main volatile resulting from sinigrin degradation, showed antimicrobial activity against all eleven tested pathogenic and food spoilage bacteria and fungi, with highest effect observed against Candida albicans with MIC50 8 and 16 µg/mL. Hydrodistillate and extract showed the best cytotoxic activity on bladder cancer UM-UC-3 cell line during an incubation time of 24 h (IC50 192.9 and 133.8 µg/mL, respectively), while the best effect on glioblastoma LN229 cell line was observed after 48 h (IC50 110.8 and 30.9 µg/mL, respectively). Pure allyl isothiocyanate displayed a similar trend in cytotoxic effect on both cell lines (IC50 23.3 and 36.5 µg/mL after 24 h and 48 h, respectively).


Assuntos
Antifúngicos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Candida albicans/efeitos dos fármacos , Isotiocianatos/farmacologia , Lepidium/química , Extratos Vegetais/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Isotiocianatos/química , Isotiocianatos/isolamento & purificação , Testes de Sensibilidade Microbiana , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Relação Estrutura-Atividade
13.
Nat Prod Res ; 33(9): 1383-1386, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-29783892

RESUMO

A chemical study of the volatile components obtained by applying the hydrodistillation and reflux processes to Pentadiplandra brazzeana roots was performed by GC-FID and GC-MS. The hydrodistillation process showed a total yield of 0.97% with 0.11% of essential oil and 0.86% of volatile compounds from the aqueous reaction medium; in the reflux process, the volatile extract yield was 1.03%. Benzylic-type isothiocyanates were the major degradation products of glucosinolates in the essential oil (95.0%); the CH2Cl2 extracts obtained from the aqueous solutions were characterised by alcohols and amines in both processes. This study has shown that during hydrodistillation, only 10% of the glucosinolate degradation products are recovered in the essential oil whereas 90% remain in the aqueous medium, being converted into alcohols and amines. The relative percentages of the different chemical classes recovered in our experimental conditions are discussed in relation with the glucosinolate composition in the raw material.


Assuntos
Destilação/métodos , Magnoliopsida/química , Óleos Voláteis/isolamento & purificação , Raízes de Plantas/química , Cromatografia Gasosa-Espectrometria de Massas , Glucosinolatos/química , Isotiocianatos/análise , Isotiocianatos/química , Óleos Voláteis/química , Extratos Vegetais/análise , Extratos Vegetais/química
14.
Molecules ; 23(4)2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29597339

RESUMO

A general pathway was devised to synthesize ω-methylsulfanylalkyl glucosinolates, which represent an important class of structurally homogeneous plant secondary metabolites. The required thiofunctionalized hydroximoyl chlorides were obtained from the corresponding α,ω-nitroalkyl methylsulfide precursors, involving as the key-step, a nitronate chlorination strategy. A coupling reaction with 1-thio-beta-d-glucopyranose, followed by O-sulfation of the intermediate thiohydroximate and final deprotection of the sugar moiety afforded the target compounds.


Assuntos
Glucosinolatos/química , Glucosinolatos/síntese química
15.
Chem Biodivers ; 14(3)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27981800

RESUMO

Plants from the Brassicaceae family are known to contain secondary metabolites called glucosinolates. Our goal was to establish by LC/MS the glucosinolate profile of seeds of three Brassicaceae species known to hyperaccumulate heavy metals. We investigated Alyssum fallacinum auct. non Hausskn., Iberis intermedia Guers., and Noccaea caerulescens (J. Presl & C. Presl) F. K. Mey. Our results indicate that A. fallacinum seeds contain glucoiberin and glucoibervirin, which had not been previously identified in this plant. Furthermore, we report for the first time the presence of glucoiberin, glucoibervirin, glucotropaeolin, and sinigrin in I. intermedia. We have detected for the first time glucoconringiin in N. caerulescens. In addition, glucosinalbin, 4-hydroxyglucobrassicin, and glucomoringin were also detected.


Assuntos
Brassicaceae/química , Glucosinolatos/análise , Brassicaceae/metabolismo , Cromatografia Líquida de Alta Pressão , Glucosinolatos/química , Isotiocianatos/análise , Extratos Vegetais/química , Sementes/química , Sementes/metabolismo , Espectrometria de Massas por Ionização por Electrospray
16.
Nat Prod Res ; 31(3): 308-313, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27858487

RESUMO

Drypetes euryodes (Hiern) Hutch., Drypetes gossweileri S. Moore, Drypetes laciniata Hutch. (Putranjivaceae), Rinorea subintegrifolia O. Ktze, and Rinorea woermanniana (Büttner) Engl. (Violaceae) from Gabon were probed for the presence of glucosinolates (GLs). When present, the GLs were identified and quantified by HPLC analysis. 2-Hydroxy-2-methyl GL (1) was the major GL in the cork of D. euryodes. Moreover, 4-hydroxybenzyl GL (2) was the major GL in the seed of D. gossweileri whereas the bark contained 2 as the minor GL and benzyl GL (3) was the major one. In addition, 4-methoxybenzyl GL (4), 3-methoxybenzyl GL (5), and 3 were found in the root of R. subintegrifolia. However, no GL was detected in D. laciniata (leaf and stem), D. euryodes (leaf and stem), and R. woermanniana (leaf and stem-branch). Our results support the hypothesis of the existence of GLs in plants of the Putranjivaceae and Violaceae families (order Malpighiales).


Assuntos
Glucosinolatos/análise , Magnoliopsida/química , Cromatografia Líquida de Alta Pressão/métodos , Gabão , Glucosinolatos/química , Glucosinolatos/isolamento & purificação , Casca de Planta/química , Extratos Vegetais/química , Folhas de Planta/química , Raízes de Plantas/química , Sementes/química
17.
Nat Prod Res ; 31(1): 58-62, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27484611

RESUMO

The glucosinolates (GLs) present in seed extracts of Brassica elongata Ehrh., B. botteri Vis and B. cazzae Ginzb. & Teyber from Croatia were identified by LC-MS. 4-Hydroxyindol-3-ylmethyl GL (3) was the major GL in the seeds of B. elongata, along with the four minor GLs 2-(R)-hydroxy-3-butenyl- (1), 3-butenyl- (2), 4-pentenyl- (4) and indol-3-ylmethyl (5). The seeds of B. botteri (Vis island) and B. cazzae (Susac island) contained 2 as the major GL as well as 1, 3, 5 and 4-methoxyindol-3-ylmethyl GL (6). However, the GLs in B. botteri (Palagruza island) differed from other varieties having 2-propenyl GL (7) as the major GL in the seeds, and the four minor GLs 2, 3, 5 and 6. This first report of the GL content in the seeds of B. elongata, B. botteri and B. cazzae indicates that the unique GL profiles could be specific to the geographical origin of the plant.


Assuntos
Brassica/química , Glucosinolatos/química , Indóis/química , Sementes/química , Cromatografia Líquida de Alta Pressão , Croácia , Espectrometria de Massas , Extratos Vegetais/química , Espectrofotometria Ultravioleta
18.
Org Biomol Chem ; 14(26): 6252-61, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27264508

RESUMO

Thioglycosides, even if rare in Nature, have gained increased interest for their biological properties. Chemical syntheses of this class of compounds have been largely studied but little has been reported on their biosynthesis. Herein, combining experiments from the different fields of enzymology, bioorganic chemistry and molecular modeling, we wish to demonstrate the versatility of the glucosyltransferase UGT74B1 and its synthetic potency for the preparation of a variety of natural and unnatural desulfoglycosinolates.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/química , Glucosiltransferases/metabolismo , Glicosídeos/biossíntese , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Biocatálise , Glucosiltransferases/química , Glicosídeos/química , Estrutura Molecular
19.
Prostate Cancer ; 2016: 8108549, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27019751

RESUMO

Hydrogen sulfide (H2S) was originally considered toxic at elevated levels; however just in the past decade H2S has been proposed to be an important gasotransmitter with various physiological and pathophysiological roles in the body. H2S can be generated endogenously from L-cysteine by multiple enzymes, including cystathionine gamma-lyase, cystathionine beta-synthase, and 3-mercaptopyruvate sulfurtransferase in combination with cysteine aminotransferase. Prostate cancer is a major health concern and no effective treatment for prostate cancers is available. H2S has been shown to inhibit cell survival of androgen-independent, androgen-dependent, and antiandrogen-resistant prostate cancer cells through different mechanisms. Various H2S-releasing compounds, including sulfide salts, diallyl disulfide, diallyl trisulfide, sulforaphane, and other polysulfides, also have been shown to inhibit prostate cancer growth and metastasis. The expression of H2S-producing enzyme was reduced in both human prostate cancer tissues and prostate cancer cells. Androgen receptor (AR) signaling is indispensable for the development of castration resistant prostate cancer, and H2S was shown to inhibit AR transactivation and contributes to antiandrogen-resistant status. In this review, we summarized the current knowledge of H2S signaling in prostate cancer and described the molecular alterations, which may bring this gasotransmitter into the clinic in the near future for developing novel pharmacological and therapeutic interventions for prostate cancer.

20.
Fitoterapia ; 106: 12-21, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26254971

RESUMO

The discovery of new natural compounds with pharmacological properties is a field of interest widely growing, especially for the management of neurodegenerative diseases. As no pharmacological treatment is available to prevent the development of these disorders, dietary intake of foods or plant-based extracts with antioxidant properties might have beneficial effects on human health and improve brain functions. Isothiocyanates (ITCs), derived from the hydrolysis of the corresponding glucosinolates (GLs), mainly found in Brassica vegetables (Brassicaceae) and, to a lesser extent, in Moringaceae plants, have demonstrated to exert neuroprotective properties. Specifically, strong evidences suggest that antioxidant effects may be ascribed mainly to their peculiar ability to activate the Nrf2/ARE pathway, but alternative mechanisms of action have also been suggested. This review summarizes the current knowledge about the neuroprotective effects of ITCs in counteracting oxidative stress as well as inflammatory and apoptotic mechanisms, using in vitro and in vivo models of acute and chronic neurodegenerative disease. Therefore, ITCs could be regarded as a promising source of alternative medicine for the prevention and/or treatment of neurodegenerative diseases.


Assuntos
Isotiocianatos/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Brassica/química , Humanos , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA