Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798507

RESUMO

Polygenic risk scores (PRSs) are commonly used for predicting an individual's genetic risk of complex diseases. Yet, their implication for disease pathogenesis remains largely limited. Here, we introduce scPRS, a geometric deep learning model that constructs single-cell-resolved PRS leveraging reference single-cell chromatin accessibility profiling data to enhance biological discovery as well as disease prediction. Real-world applications across multiple complex diseases, including type 2 diabetes (T2D), hypertrophic cardiomyopathy (HCM), and Alzheimer's disease (AD), showcase the superior prediction power of scPRS compared to traditional PRS methods. Importantly, scPRS not only predicts disease risk but also uncovers disease-relevant cells, such as hormone-high alpha and beta cells for T2D, cardiomyocytes and pericytes for HCM, and astrocytes, microglia and oligodendrocyte progenitor cells for AD. Facilitated by a layered multi-omic analysis, scPRS further identifies cell-type-specific genetic underpinnings, linking disease-associated genetic variants to gene regulation within corresponding cell types. We substantiate the disease relevance of scPRS-prioritized HCM genes and demonstrate that the suppression of these genes in HCM cardiomyocytes is rescued by Mavacamten treatment. Additionally, we establish a novel microglia-specific regulatory relationship between the AD risk variant rs7922621 and its target genes ANXA11 and TSPAN14. We further illustrate the detrimental effects of suppressing these two genes on microglia phagocytosis. Our work provides a multi-tasking, interpretable framework for precise disease prediction and systematic investigation of the genetic, cellular, and molecular basis of complex diseases, laying the methodological foundation for single-cell genetics.

2.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798547

RESUMO

BACKGROUND: There is growing evidence that pathogenic mutations do not fully explain hypertrophic (HCM) or dilated (DCM) cardiomyopathy phenotypes. We hypothesized that if a patient's genetic background was influencing cardiomyopathy this should be detectable as signatures in gene expression. We built a cardiomyopathy biobank resource for interrogating personalized genotype phenotype relationships in human cell lines. METHODS: We recruited 308 diseased and control patients for our cardiomyopathy stem cell biobank. We successfully reprogrammed PBMCs (peripheral blood mononuclear cells) into induced pluripotent stem cells (iPSCs) for 300 donors. These iPSCs underwent whole genome sequencing and were differentiated into cardiomyocytes for RNA-seq. In addition to annotating pathogenic variants, mutation burden in a panel of cardiomyopathy genes was assessed for correlation with echocardiogram measurements. Line-specific co-expression networks were inferred to evaluate transcriptomic subtypes. Drug treatment targeted the sarcomere, either by activation with omecamtiv mecarbil or inhibition with mavacamten, to alter contractility. RESULTS: We generated an iPSC biobank from 300 donors, which included 101 individuals with HCM and 88 with DCM. Whole genome sequencing of 299 iPSC lines identified 78 unique pathogenic or likely pathogenic mutations in the diseased lines. Notably, only DCM lines lacking a known pathogenic or likely pathogenic mutation replicated a finding in the literature for greater nonsynonymous SNV mutation burden in 102 cardiomyopathy genes to correlate with lower left ventricular ejection fraction in DCM. We analyzed RNA-sequencing data from iPSC-derived cardiomyocytes for 102 donors. Inferred personalized co-expression networks revealed two transcriptional subtypes of HCM. The first subtype exhibited concerted activation of the co-expression network, with the degree of activation reflective of the disease severity of the donor. In contrast, the second HCM subtype and the entire DCM cohort exhibited partial activation of the respective disease network, with the strength of specific gene by gene relationships dependent on the iPSC-derived cardiomyocyte line. ADCY5 was the largest hubnode in both the HCM and DCM networks and partially corrected in response to drug treatment. CONCLUSIONS: We have a established a stem cell biobank for studying cardiomyopathy. Our analysis supports the hypothesis the genetic background influences pathologic gene expression programs and support a role for ADCY5 in cardiomyopathy.

3.
Nature ; 619(7970): 572-584, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37468586

RESUMO

The intestine is a complex organ that promotes digestion, extracts nutrients, participates in immune surveillance, maintains critical symbiotic relationships with microbiota and affects overall health1. The intesting has a length of over nine metres, along which there are differences in structure and function2. The localization of individual cell types, cell type development trajectories and detailed cell transcriptional programs probably drive these differences in function. Here, to better understand these differences, we evaluated the organization of single cells using multiplexed imaging and single-nucleus RNA and open chromatin assays across eight different intestinal sites from nine donors. Through systematic analyses, we find cell compositions that differ substantially across regions of the intestine and demonstrate the complexity of epithelial subtypes, and find that the same cell types are organized into distinct neighbourhoods and communities, highlighting distinct immunological niches that are present in the intestine. We also map gene regulatory differences in these cells that are suggestive of a regulatory differentiation cascade, and associate intestinal disease heritability with specific cell types. These results describe the complexity of the cell composition, regulation and organization for this organ, and serve as an important reference map for understanding human biology and disease.


Assuntos
Intestinos , Análise de Célula Única , Humanos , Diferenciação Celular/genética , Cromatina/genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Mucosa Intestinal/citologia , Intestinos/citologia , Intestinos/imunologia , Análise da Expressão Gênica de Célula Única
4.
Eur Heart J ; 43(36): 3477-3489, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-35728000

RESUMO

AIMS: Genetic dilated cardiomyopathy (DCM) is a leading cause of heart failure. Despite significant progress in understanding the genetic aetiologies of DCM, the molecular mechanisms underlying the pathogenesis of familial DCM remain unknown, translating to a lack of disease-specific therapies. The discovery of novel targets for the treatment of DCM was sought using phenotypic sceening assays in induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) that recapitulate the disease phenotypes in vitro. METHODS AND RESULTS: Using patient-specific iPSCs carrying a pathogenic TNNT2 gene mutation (p.R183W) and CRISPR-based genome editing, a faithful DCM model in vitro was developed. An unbiased phenotypic screening in TNNT2 mutant iPSC-derived cardiomyocytes (iPSC-CMs) with small molecule kinase inhibitors (SMKIs) was performed to identify novel therapeutic targets. Two SMKIs, Gö 6976 and SB 203580, were discovered whose combinatorial treatment rescued contractile dysfunction in DCM iPSC-CMs carrying gene mutations of various ontologies (TNNT2, TTN, LMNA, PLN, TPM1, LAMA2). The combinatorial SMKI treatment upregulated the expression of genes that encode serine, glycine, and one-carbon metabolism enzymes and significantly increased the intracellular levels of glucose-derived serine and glycine in DCM iPSC-CMs. Furthermore, the treatment rescued the mitochondrial respiration defects and increased the levels of the tricarboxylic acid cycle metabolites and ATP in DCM iPSC-CMs. Finally, the rescue of the DCM phenotypes was mediated by the activating transcription factor 4 (ATF4) and its downstream effector genes, phosphoglycerate dehydrogenase (PHGDH), which encodes a critical enzyme of the serine biosynthesis pathway, and Tribbles 3 (TRIB3), a pseudokinase with pleiotropic cellular functions. CONCLUSIONS: A phenotypic screening platform using DCM iPSC-CMs was established for therapeutic target discovery. A combination of SMKIs ameliorated contractile and metabolic dysfunction in DCM iPSC-CMs mediated via the ATF4-dependent serine biosynthesis pathway. Together, these findings suggest that modulation of serine biosynthesis signalling may represent a novel genotype-agnostic therapeutic strategy for genetic DCM.


Assuntos
Cardiomiopatia Dilatada , Terapia de Alvo Molecular , Miócitos Cardíacos , Inibidores de Proteínas Quinases , Serina , Troponina T , Fator 4 Ativador da Transcrição/metabolismo , Trifosfato de Adenosina/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Carbazóis/farmacologia , Carbazóis/uso terapêutico , Cardiomiopatia Dilatada/tratamento farmacológico , Cardiomiopatia Dilatada/genética , Avaliação Pré-Clínica de Medicamentos/métodos , Glucose/metabolismo , Glicina/biossíntese , Glicina/genética , Humanos , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Células-Tronco Pluripotentes Induzidas/fisiologia , Mutação , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Fosfoglicerato Desidrogenase/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Serina/antagonistas & inibidores , Serina/biossíntese , Serina/genética , Troponina T/genética , Troponina T/metabolismo
5.
Front Cardiovasc Med ; 9: 837725, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620521

RESUMO

Background: Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and post-operative atrial fibrillation (POAF) is a major healthcare burden, contributing to an increased risk of stroke, kidney failure, heart attack and death. Genetic studies have identified associations with AF, but no molecular diagnostic exists to predict POAF based on pre-operative measurements. Such a tool would be of great value for perioperative planning to improve patient care and reduce healthcare costs. In this pilot study of epigenetic precision medicine in the perioperative period, we carried out bisulfite sequencing to measure DNA methylation status in blood collected from patients prior to cardiac surgery to identify biosignatures of POAF. Methods: We enrolled 221 patients undergoing cardiac surgery in this prospective observational study. DNA methylation measurements were obtained from blood samples drawn from awake patients prior to surgery. After controlling for clinical and methylation covariates, we analyzed DNA methylation loci in the discovery cohort of 110 patients for association with POAF. We also constructed predictive models for POAF using clinical and DNA methylation data. We subsequently performed targeted analyses of a separate cohort of 101 cardiac surgical patients to measure the methylation status solely of significant methylation loci in the discovery cohort. Results: A total of 47 patients in the discovery cohort (42.7%) and 43 patients in the validation cohort (42.6%) developed POAF. We identified 12 CpGs that were statistically significant in the discovery cohort after correcting for multiple hypothesis testing. Of these sites, 6 were amenable to targeted bisulfite sequencing and chr16:24640902 was statistically significant in the validation cohort. In addition, the methylation POAF prediction model had an AUC of 0.79 in the validation cohort. Conclusions: We have identified DNA methylation biomarkers that can predict future occurrence of POAF associated with cardiac surgery. This research demonstrates the use of precision medicine to develop models combining epigenomic and clinical data to predict disease.

6.
Nat Commun ; 13(1): 3007, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35637192

RESUMO

RNA polymerase III (Pol III) includes two alternate isoforms, defined by mutually exclusive incorporation of subunit POLR3G (RPC7α) or POLR3GL (RPC7ß), in mammals. The contributions of POLR3G and POLR3GL to transcription potential has remained poorly defined. Here, we discover that loss of subunit POLR3G is accompanied by a restricted repertoire of genes transcribed by Pol III. Particularly sensitive is snaR-A, a small noncoding RNA implicated in cancer proliferation and metastasis. Analysis of Pol III isoform biases and downstream chromatin features identifies loss of POLR3G and snaR-A during differentiation, and conversely, re-establishment of POLR3G gene expression and SNAR-A gene features in cancer contexts. Our results support a model in which Pol III identity functions as an important transcriptional regulatory mechanism. Upregulation of POLR3G, which is driven by MYC, identifies a subgroup of patients with unfavorable survival outcomes in specific cancers, further implicating the POLR3G-enhanced transcription repertoire as a potential disease factor.


Assuntos
Neoplasias , Pequeno RNA não Traduzido , Animais , Cromatina , Humanos , Mamíferos/genética , Neoplasias/genética , Isoformas de Proteínas/genética , RNA Polimerase III/genética , RNA Polimerase III/metabolismo
7.
Circulation ; 136(17): 1613-1625, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-28802249

RESUMO

BACKGROUND: Cardiovascular disease is associated with epigenomic changes in the heart; however, the endogenous structure of cardiac myocyte chromatin has never been determined. METHODS: To investigate the mechanisms of epigenomic function in the heart, genome-wide chromatin conformation capture (Hi-C) and DNA sequencing were performed in adult cardiac myocytes following development of pressure overload-induced hypertrophy. Mice with cardiac-specific deletion of CTCF (a ubiquitous chromatin structural protein) were generated to explore the role of this protein in chromatin structure and cardiac phenotype. Transcriptome analyses by RNA-seq were conducted as a functional readout of the epigenomic structural changes. RESULTS: Depletion of CTCF was sufficient to induce heart failure in mice, and human patients with heart failure receiving mechanical unloading via left ventricular assist devices show increased CTCF abundance. Chromatin structural analyses revealed interactions within the cardiac myocyte genome at 5-kb resolution, enabling examination of intra- and interchromosomal events, and providing a resource for future cardiac epigenomic investigations. Pressure overload or CTCF depletion selectively altered boundary strength between topologically associating domains and A/B compartmentalization, measurements of genome accessibility. Heart failure involved decreased stability of chromatin interactions around disease-causing genes. In addition, pressure overload or CTCF depletion remodeled long-range interactions of cardiac enhancers, resulting in a significant decrease in local chromatin interactions around these functional elements. CONCLUSIONS: These findings provide a high-resolution chromatin architecture resource for cardiac epigenomic investigations and demonstrate that global structural remodeling of chromatin underpins heart failure. The newly identified principles of endogenous chromatin structure have key implications for epigenetic therapy.


Assuntos
Cardiomegalia/metabolismo , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Epigênese Genética , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Cromatina/genética , Cromatina/patologia , Estudo de Associação Genômica Ampla , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Camundongos , Camundongos Knockout , Miócitos Cardíacos/patologia
8.
Neuron ; 95(3): 531-549.e9, 2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28712653

RESUMO

Astrocytes are ubiquitous in the brain and are widely held to be largely identical. However, this view has not been fully tested, and the possibility that astrocytes are neural circuit specialized remains largely unexplored. Here, we used multiple integrated approaches, including RNA sequencing (RNA-seq), mass spectrometry, electrophysiology, immunohistochemistry, serial block-face-scanning electron microscopy, morphological reconstructions, pharmacogenetics, and diffusible dye, calcium, and glutamate imaging, to directly compare adult striatal and hippocampal astrocytes under identical conditions. We found significant differences in electrophysiological properties, Ca2+ signaling, morphology, and astrocyte-synapse proximity between striatal and hippocampal astrocytes. Unbiased evaluation of actively translated RNA and proteomic data confirmed significant astrocyte diversity between hippocampal and striatal circuits. We thus report core astrocyte properties, reveal evidence for specialized astrocytes within neural circuits, and provide new, integrated database resources and approaches to explore astrocyte diversity and function throughout the adult brain. VIDEO ABSTRACT.


Assuntos
Astrócitos/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Hipocampo/fisiologia , Proteômica , Sinapses/metabolismo , Transcriptoma , Animais , Corpo Estriado/metabolismo , Ácido Glutâmico/metabolismo , Camundongos , Neostriado/metabolismo , Proteômica/métodos
10.
Compr Physiol ; 6(4): 1851-1872, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27783861

RESUMO

The past two decades have witnessed a rapid evolution in our ability to measure RNA and protein from biological systems. As a result, new principles have arisen regarding how information is processed in cells, how decisions are made, and the role of networks in biology. This essay examines this technological evolution, reviewing (and critiquing) the conceptual framework that has emerged to explain how RNA and protein networks control cellular function. We identify how future investigations into transcriptomes, proteomes, and other cellular networks will enable development of more robust, quantitative models of cellular behavior whilst also providing new avenues to use knowledge of biological networks to improve human health. © 2016 American Physiological Society. Compr Physiol 6:1851-1872, 2016.


Assuntos
Proteínas/fisiologia , RNA/fisiologia , Animais , Humanos , Proteoma , Análise de Sequência de RNA , Transcriptoma
11.
Physiol Genomics ; 48(8): 601-15, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27287924

RESUMO

Expression of a cohort of disease-associated genes, some of which are active in fetal myocardium, is considered a hallmark of transcriptional change in cardiac hypertrophy models. How this transcriptome remodeling is affected by the common genetic variation present in populations is unknown. We examined the role of genetics, as well as contributions of chromatin proteins, to regulate cardiac gene expression and heart failure susceptibility. We examined gene expression in 84 genetically distinct inbred strains of control and isoproterenol-treated mice, which exhibited varying degrees of disease. Unexpectedly, fetal gene expression was not correlated with hypertrophic phenotypes. Unbiased modeling identified 74 predictors of heart mass after isoproterenol-induced stress, but these predictors did not enrich for any cardiac pathways. However, expanded analysis of fetal genes and chromatin remodelers as groups correlated significantly with individual systemic phenotypes. Yet, cardiac transcription factors and genes shown by gain-/loss-of-function studies to contribute to hypertrophic signaling did not correlate with cardiac mass or function in disease. Because the relationship between gene expression and phenotype was strain specific, we examined genetic contribution to expression. Strikingly, strains with similar transcriptomes in the basal heart did not cluster together in the isoproterenol state, providing comprehensive evidence that there are different genetic contributors to physiological and pathological gene expression. Furthermore, the divergence in transcriptome similarity versus genetic similarity between strains is organ specific and genome-wide, suggesting chromatin is a critical buffer between genetics and gene expression.


Assuntos
Cardiomegalia/genética , Cromatina/genética , Regulação da Expressão Gênica/genética , Expressão Gênica/genética , Variação Genética/genética , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Feminino , Coração/fisiologia , Camundongos , Fenótipo , Transdução de Sinais/genética , Fatores de Transcrição/genética
12.
J Biol Chem ; 291(30): 15428-46, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27226577

RESUMO

Transcriptome remodeling in heart disease occurs through the coordinated actions of transcription factors, histone modifications, and other chromatin features at pathology-associated genes. The extent to which genome-wide chromatin reorganization also contributes to the resultant changes in gene expression remains unknown. We examined the roles of two chromatin structural proteins, Ctcf (CCCTC-binding factor) and Hmgb2 (high mobility group protein B2), in regulating pathologic transcription and chromatin remodeling. Our data demonstrate a reciprocal relationship between Hmgb2 and Ctcf in controlling aspects of chromatin structure and gene expression. Both proteins regulate each others' expression as well as transcription in cardiac myocytes; however, only Hmgb2 does so in a manner that involves global reprogramming of chromatin accessibility. We demonstrate that the actions of Hmgb2 on local chromatin accessibility are conserved across genomic loci, whereas the effects on transcription are loci-dependent and emerge in concert with histone modification and other chromatin features. Finally, although both proteins share gene targets, Hmgb2 and Ctcf, neither binds these genes simultaneously nor do they physically colocalize in myocyte nuclei. Our study uncovers a previously unknown relationship between these two ubiquitous chromatin proteins and provides a mechanistic explanation for how Hmgb2 regulates gene expression and cellular phenotype. Furthermore, we provide direct evidence for structural remodeling of chromatin on a genome-wide scale in the setting of cardiac disease.


Assuntos
Cromatina/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteína HMGB2/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Repressoras/metabolismo , Animais , Fator de Ligação a CCCTC , Cromatina/genética , Epigenômica , Feminino , Células HEK293 , Proteína HMGB2/genética , Células HeLa , Humanos , Camundongos , Proteínas Repressoras/genética
13.
J Mol Cell Cardiol ; 90: 70-3, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26611885

RESUMO

The application of proteomics in biology and medicine has reached a moment of truth. The demand of biologists for transformative insights into how cells work, plus the mandate of basic science research to ultimately impact clinical medicine, crystallize as a test on the rigor and reproducibility of any 'omics measurement. Studies like that by Boylston et al. indicate that proteomics can pass that test.


Assuntos
Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Processamento de Proteína Pós-Traducional , Sirtuína 1/genética , Ácido Succínico/metabolismo , Animais , Feminino , Masculino
14.
Proteomics Clin Appl ; 8(7-8): 480-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24957631

RESUMO

Cardiovascular disease is a tremendous burden on human health and results from malfunction of various networks of biological molecules in the context of environmental stress. Despite strong evidence of heritability, many common forms of heart disease (heart failure in particular) have not yielded to genome-wide association studies to identify causative mutations acting via the disruption of individual molecules. Increasing evidence suggests, however, that genetic variation in noncoding regions is strongly linked to disease susceptibility. We hypothesize that epigenomic variation may engender different chromatin environments in the absence of (or in parallel with) changes in protein or mRNA sequence and abundance. In this manner, distinct-genetically encoded-chromatin environments can exhibit distinct responses to environmental stresses that cause heart failure, explaining a significant portion of the altered susceptibility that is observed in human disease.


Assuntos
Doenças Cardiovasculares/genética , Epigenômica/métodos , Cromatina/genética , Variação Genética , Humanos , Miocárdio/metabolismo , Fenótipo
16.
Am J Physiol Heart Circ Physiol ; 305(11): H1624-38, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24077883

RESUMO

Myocyte hypertrophy antecedent to heart failure involves changes in global gene expression, although the preceding mechanisms to coordinate DNA accessibility on a genomic scale are unknown. Chromatin-associated proteins alter chromatin structure by changing their association with DNA, thereby altering the gene expression profile. Little is known about the global changes in chromatin subproteomes that accompany heart failure, and the mechanisms by which these proteins alter chromatin structure. The present study tests the fundamental hypothesis that cardiac growth and plasticity in the setting of disease recapitulates conserved developmental chromatin remodeling events. We used quantitative proteomics to identify chromatin-associated proteins extracted via detergent and to quantify changes in their abundance during disease. Our study identified 321 proteins in this subproteome, demonstrating it to have modest conservation (37%) with that revealed using strong acid. Of these proteins, 176 exhibited altered expression during cardiac hypertrophy and failure; we conducted extensive functional characterization of one of these proteins, Nucleolin. Morpholino-based knockdown of nucleolin nearly abolished protein expression but surprisingly had little impact on gross morphological development. However, hearts of fish lacking Nucleolin displayed severe developmental impairment, abnormal chamber patterning and functional deficits, ostensibly due to defects in cardiac looping and myocyte differentiation. The mechanisms underlying these defects involve perturbed bone morphogenetic protein 4 expression, decreased rRNA transcription, and a shift to more heterochromatic chromatin. This study reports the quantitative analysis of a new chromatin subproteome in the normal and diseased mouse heart. Validation studies in the complementary model system of zebrafish examine the role of Nucleolin to orchestrate genomic reprogramming events shared between development and disease.


Assuntos
Cardiomegalia/metabolismo , Cromatina/metabolismo , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Fosfoproteínas/metabolismo , Proteômica , Proteínas de Ligação a RNA/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Proteína Morfogenética Óssea 4/metabolismo , Cardiomegalia/genética , Cardiomegalia/patologia , Células Cultivadas , Montagem e Desmontagem da Cromatina , Modelos Animais de Doenças , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Técnicas de Silenciamento de Genes , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Miócitos Cardíacos/patologia , Fosfoproteínas/genética , Proteômica/métodos , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/genética , Ratos , Transdução de Sinais , Fatores de Tempo , Transcrição Gênica , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Nucleolina
17.
Methods Mol Biol ; 1005: 77-93, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23606250

RESUMO

Differences in chromatin-associated proteins allow the same genome to participate in multiple cell types and to respond to an array of stimuli in any given cell. To understand the fundamental properties of chromatin and to reveal its cell- and/or stimulus-specific behaviors, quantitative proteomics is an essential technology. This chapter details the methods for fractionation and quantitative mass spectrometric analysis of chromatin from hearts or isolated adult myocytes, detailing some of the considerations for applications to understanding heart disease. The state-of-the-art methodology for data interpretation and integration through bioinformatics is reviewed.


Assuntos
Doenças Cardiovasculares/genética , Cromatina/química , Biologia Computacional , Miocárdio/química , Miócitos Cardíacos/metabolismo , Proteoma/metabolismo , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Núcleo Celular/química , Núcleo Celular/metabolismo , Fracionamento Químico , Cromatina/metabolismo , Cromatina/patologia , Eletroforese em Gel de Poliacrilamida , Expressão Gênica , Humanos , Espectrometria de Massas , Camundongos , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/química , Miócitos Cardíacos/citologia , Proteólise , Proteoma/genética
18.
Circ J ; 77(6): 1389-98, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23575346

RESUMO

It has been appreciated for some time that cardiovascular disease involves large-scale transcriptional changes in various cell types. What has become increasingly clear only in the past few years, however, is the role of chromatin remodeling in cardiovascular phenotypes in normal physiology, as well as in development and disease. This review summarizes the state of the chromatin field in terms of distinct mechanisms to regulate chromatin structure in vivo, identifying when these modes of regulation have been demonstrated in cardiovascular tissues. We describe areas in which a better understanding of chromatin structure is leading to new insights into the fundamental biology of cardiovascular disease.


Assuntos
Doenças Cardiovasculares/metabolismo , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Animais , Doenças Cardiovasculares/patologia , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/patologia , Humanos
19.
FEBS Lett ; 586(20): 3548-54, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22940112

RESUMO

Lacking from the rapidly evolving field of chromatin regulation is a discrete model of chromatin states. We propose that each state in such a model should meet two conditions: a structural component and a quantifiable effect on transcription. The practical benefits to the field of a model with greater than two states (including one with six states, as described herein) would be to improve interpretation of data from disparate organ systems, to reflect temporal and developmental dynamics and to integrate the, at present, conceptually and experimentally disparate analyses of individual genetic loci (in vitro or using single gene approaches) and genome-wide features (including ChlP-seq, chromosomal capture and mRNA expression via microarrays/sequencing).


Assuntos
Cromatina/química , Cromatina/genética , Modelos Biológicos , Transcrição Gênica , Animais , Humanos
20.
J Vis Exp ; (70)2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23299252

RESUMO

In the nucleus reside the proteomes whose functions are most intimately linked with gene regulation. Adult mammalian cardiomyocyte nuclei are unique due to the high percentage of binucleated cells,(1) the predominantly heterochromatic state of the DNA, and the non-dividing nature of the cardiomyocyte which renders adult nuclei in a permanent state of interphase.(2) Transcriptional regulation during development and disease have been well studied in this organ,(3-5) but what remains relatively unexplored is the role played by the nuclear proteins responsible for DNA packaging and expression, and how these proteins control changes in transcriptional programs that occur during disease.(6) In the developed world, heart disease is the number one cause of mortality for both men and women.(7) Insight on how nuclear proteins cooperate to regulate the progression of this disease is critical for advancing the current treatment options. Mass spectrometry is the ideal tool for addressing these questions as it allows for an unbiased annotation of the nuclear proteome and relative quantification for how the abundance of these proteins changes with disease. While there have been several proteomic studies for mammalian nuclear protein complexes,(8-13) until recently(14) there has been only one study examining the cardiac nuclear proteome, and it considered the entire nucleus, rather than exploring the proteome at the level of nuclear sub compartments.(15) In large part, this shortage of work is due to the difficulty of isolating cardiac nuclei. Cardiac nuclei occur within a rigid and dense actin-myosin apparatus to which they are connected via multiple extensions from the endoplasmic reticulum, to the extent that myocyte contraction alters their overall shape.(16) Additionally, cardiomyocytes are 40% mitochondria by volume(17) which necessitates enrichment of the nucleus apart from the other organelles. Here we describe a protocol for cardiac nuclear enrichment and further fractionation into biologically-relevant compartments. Furthermore, we detail methods for label-free quantitative mass spectrometric dissection of these fractions-techniques amenable to in vivo experimentation in various animal models and organ systems where metabolic labeling is not feasible.


Assuntos
Cromatina/química , Espectrometria de Massas/métodos , Proteoma/análise , Animais , Western Blotting , Fracionamento Celular/métodos , Núcleo Celular/química , Células HeLa , Humanos , Camundongos , Microscopia Eletrônica , Miócitos Cardíacos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA