Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2400522, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989725

RESUMO

In the pursuit of advancing neural tissue regeneration, biomaterial scaffolds have emerged as promising candidates, offering potential solutions for nerve disruptions. Among these scaffolds, multichannel hydrogels, characterized by meticulously designed micrometer-scale channels, stand out as instrumental tools for guiding axonal growth and facilitating cellular interactions. This study explores the innovative application of human amniotic membranes modified with methacryloyl domains (AMMA) in neural stem cell (NSC) culture. AMMA hydrogels, possessing a tailored softness resembling the physiological environment, are prepared in the format of multichannel scaffolds to simulate native-like microarchitecture of nerve tracts. Preliminary experiments on AMMA hydrogel films showcase their potential for neural applications, demonstrating robust adhesion, proliferation, and differentiation of NSCs without the need for additional coatings. Transitioning into the 3D realm, the multichannel architecture fosters intricate neuronal networks guiding neurite extension longitudinally. Furthermore, the presence of synaptic vesicles within the cellular arrays suggests the establishment of functional synaptic connections, underscoring the physiological relevance of the developed neuronal networks. This work contributes to the ongoing efforts to find ethical, clinically translatable, and functionally relevant approaches for regenerative neuroscience.

2.
Biomater Sci ; 12(17): 4393-4406, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39034884

RESUMO

The ordered arrangement of cells and extracellular matrix facilitates the seamless transmission of electrical signals along axons in the spinal cord and peripheral nerves. Therefore, restoring tissue geometry is crucial for neural regeneration. This study presents a novel method using proteins derived from the human amniotic membrane, which is modified with photoresponsive groups, to produce cryogels with aligned porosity. Freeze-casting was used to produce cryogels with longitudinally aligned pores, while cryogels with randomly distributed porosity were used as the control. The cryogels exhibited remarkable injectability and shape-recovery properties, essential for minimally invasive applications. Different tendencies in proliferation and differentiation were evident between aligned and random cryogels, underscoring the significance of the scaffold's microstructure in directing the behaviour of neural stem cells (NSC). Remarkably, aligned cryogels facilitated extensive cellular infiltration and migration, contrasting with NSC cultured on isotropic cryogels, which predominantly remained on the scaffold's surface throughout the proliferation experiment. Significantly, the proliferation assay demonstrated that on day 7, the aligned cryogels contained eight times more cells compared to the random cryogels. Consistent with the proliferation experiments, NSC exhibited the ability to differentiate into neurons within the aligned scaffolds and extend neurites longitudinally. In addition, differentiation assays showed a four-fold increase in the expression of neural markers in the cross-sections of the aligned cryogels. Conversely, the random cryogels exhibited minimal presence of cell bodies and extensions. The presence of synaptic vesicles on the anisotropic cryogels indicates the formation of functional synaptic connections, emphasizing the importance of the scaffold's microstructure in guiding neuronal reconnection.


Assuntos
Âmnio , Diferenciação Celular , Proliferação de Células , Criogéis , Regeneração Nervosa , Células-Tronco Neurais , Alicerces Teciduais , Âmnio/química , Criogéis/química , Humanos , Células-Tronco Neurais/citologia , Alicerces Teciduais/química , Animais , Porosidade , Engenharia Tecidual , Células Cultivadas
3.
ACS Nano ; 18(24): 15815-15830, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38833572

RESUMO

Amyloid-like fibrils are garnering keen interest in biotechnology as supramolecular nanofunctional units to be used as biomimetic platforms to control cell behavior. Recent insights into fibril functionality have highlighted their importance in tissue structure, mechanical properties, and improved cell adhesion, emphasizing the need for scalable and high-kinetics fibril synthesis. In this study, we present the instantaneous and bulk formation of amyloid-like nanofibrils from human platelet lysate (PL) using the ionic liquid cholinium tosylate as a fibrillating agent. The instant fibrillation of PL proteins upon supramolecular protein-ionic liquid interactions was confirmed from the protein conformational transition toward cross-ß-sheet-rich structures. These nanofibrils were utilized as building blocks for the formation of thin and flexible free-standing membranes via solvent casting to support cell self-aggregation. These PL-derived fibril membranes reveal a nanotopographically rough surface and high stability over 14 days under cell culture conditions. The culture of mesenchymal stem cells or tumor cells on the top of the membrane demonstrated that cells are able to adhere and self-organize in a three-dimensional (3D) spheroid-like microtissue while tightly folding the fibril membrane. Results suggest that nanofibril membrane incorporation in cell aggregates can improve cell viability and metabolic activity, recreating native tissues' organization. Altogether, these PL-derived nanofibril membranes are suitable bioactive platforms to generate 3D cell-guided microtissues, which can be explored as bottom-up strategies to faithfully emulate native tissues in a fully human microenvironment.


Assuntos
Plaquetas , Nanofibras , Humanos , Plaquetas/metabolismo , Plaquetas/química , Nanofibras/química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Agregação Celular/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Amiloide/química , Amiloide/metabolismo , Membranas Artificiais
4.
Macromol Biosci ; : e2400227, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940700

RESUMO

The immune system is a pivotal player in determining tumor fate, contributing to the immunosuppressive microenvironment that supports tumor progression. Considering the emergence of biomaterials as promising platforms to mimic the tumor microenvironment, human platelet lysate (PLMA)-based hydrogel beads are proposed as 3D platforms to recapitulate the tumor milieu and recreate the synergistic tumor-macrophage communication. Having characterized the biomaterial-mediated pro-regenerative macrophage phenotype, an osteosarcoma spheroid encapsulated into a PLMA hydrogel bead is explored to study macrophage immunomodulation through paracrine signaling. The culture of PLMA-Tumor beads on the top of a 2D monolayer of macrophages reveals that tumor cells triggered morphologic and metabolic adaptations in macrophages. The cytokine profile, coupled with the upregulation of gene and protein anti-inflammatory biomarkers clearly indicates macrophage polarization toward an M2-like phenotype. Moreover, the increased gene expression of chemokines identified as pro-tumoral environmental regulators suggest a tumor-associated macrophage phenotype, exclusively stimulated by tumor cells. This pro-tumoral microenvironment is also found to enhance tumor invasiveness ability and proliferation. Besides providing a robust in vitro immunomodulatory tumor model that faithfully recreates the tumor-macrophage interplay, this human-based platform has the potential to provide fundamental insights into immunosuppressive signaling and predict immune-targeted response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA