Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37896716

RESUMO

Recent advances in embedded antenna and sensor technologies for 5G communications have galvanized a response toward the investigation of their electromagnetic performance for urban contexts and civil engineering applications. This article quantitatively investigates the effects of material loading on an evolved antecedent hexagonal complementary split-ring resonator (CSRR)-loaded antenna design through simulation and experimentation. Optimization of the narrowband antenna system was first performed in a simulation environment to achieve resonance at 3.50 GHz, featuring an impedance bandwidth of 1.57% with maximum return loss and theoretical gain values of 20.0 dB and 1.80 dBi, respectively. As a proof-of-concept, a physical prototype is fabricated on a printed circuit board followed by a simulation-based parametric study involving antenna prototypes embedded into Ordinary Portland Cement pastes with varying weight percentages of iron(III) oxide inclusions. Simulation-derived and experimental results are mutually verified, achieving a systemic downward shift in resonant frequency and corresponding variations in impedance matching induced by changes in loading reactance. Finally, an inversion modeling procedure is employed using perturbation theory to extrapolate the relative permittivity of the dielectric loaded materials. Our proposed analysis contributes to optimizing concrete-embedded 5G antenna sensor designs and establishes a foundational framework for estimating unknown dielectric parameters of cementitious composites.

2.
Sci Rep ; 7(1): 15185, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-29123211

RESUMO

Small resonator antennas, such as metaresonator antennas, have narrow bandwidths, which limits their effective range of frequencies. When they are used as embedded antennas in building materials, their performance is affected more than other types of antennas, as typical building materials have a shielding effectiveness (SE) of 80 dB to 100 dB. Adding magnetic and/or metallic particles to cement mixes changes the properties of the concrete, which can improve the performance of antennas. Specifically, enhancing a cement paste with iron-based magnetic particles improves the bandwidth and S11 of embedded antennas. This report investigates the impact of two different iron-based magnetic particle sizes (micro- and nanosized particles) to determine the effects that they have on the S11 and S21 characteristics of the metaresonator antenna array embedded in enhanced cement pastes. Results show that compared to cement paste only sample, cement paste with micro-sized iron-based magnetic particles had the greatest improvement of performance of a metaresonator antenna array in terms of a small shift in the resonance frequency and an increase of bandwidth. Particularly for a cement paste enhanced with micro-sized iron (III) oxide particles, the S21 curve was improved over the cement paste only sample by as much as 10 dB.

3.
ACS Appl Mater Interfaces ; 9(46): 41014-41025, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29076343

RESUMO

Properties of organic/inorganic composites can be highly dependent on the interfacial connections. In this work, molecular dynamics, using pair-potential-based force fields, was employed to investigate the structure, dynamics, and stability of interfacial connections between calcium-silicate-hydrates (C-S-H) and organic functional groups of three different polymer species. The calculation results suggest that the affinity between C-S-H and polymers is influenced by the polarity of the functional groups and the diffusivity and aggregation tendency of the polymers. In the interfaces, the calcium counterions from C-S-H act as the coordination atoms in bridging the double-bonded oxygen atoms in the carboxyl groups (-COOH), and the Ca-O connection plays a dominant role in binding poly(acrylic acid) (PAA) due to the high bond strength defined by time-correlated function. The defective calcium-silicate chains provide significant numbers of nonbridging oxygen sites to accept H-bonds from -COOH groups. As compared with PAA, the interfacial interactions are much weaker between C-S-H and poly(vinyl alcohol) (PVA) or poly(ethylene glycol) (PEG). Predominate percentage of the -OH groups in the PVA form H-bonds with inter- and intramolecule, which results in the polymer intertwining and reduces the probability of H-bond connections between PVA and C-S-H. On the other hand, the inert functional groups (C-O-C) in poly(ethylene glycol) (PEG) make this polymer exhibit unfolded configurations and move freely with little restrictions. The interaction mechanisms interpreted in this organic-inorganic interface can give fundamental insights into the polymer modification of C-S-H and further implications to improving cement-based materials from the genetic level.

4.
Sci Rep ; 7(1): 10986, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28887517

RESUMO

Calciuam-silicate-hydrate (C-S-H) is the principal binding phase in modern concrete. Molecular simulations imply that its nanoscale stiffness is 'defect-driven', i.e., dominated by crystallographic defects such as bridging site vacancies in its silicate chains. However, experimental validation of this result is difficult due to the hierarchically porous nature of C-S-H down to nanometers. Here, we integrate high pressure X-ray diffraction and atomistic simulations to correlate the anisotropic deformation of nanocrystalline C-S-H to its atomic-scale structure, which is changed by varying the Ca-to-Si molar ratio. Contrary to the 'defect-driven' hypothesis, we clearly observe stiffening of C-S-H with increasing Ca/Si in the range 0.8 ≤ Ca/Si ≤ 1.3, despite increasing numbers of vacancies in its silicate chains. The deformation of these chains along the b-axis occurs mainly through tilting of the Si-O-Si dihedral angle rather than shortening of the Si-O bond, and consequently there is no correlation between the incompressibilities of the a- and b-axes and the Ca/Si. On the contrary, the intrinsic stiffness of C-S-H solid is inversely correlated with the thickness of its interlayer space. This work provides direct experimental evidence to conduct more realistic modelling of C-S-H-based cementitious material.

5.
Materials (Basel) ; 10(9)2017 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-28869559

RESUMO

This paper presents research on the influence of quartz deformation in aggregates for the development of the alkali-silica reaction in concrete and its relationship with silica dissolution. The study also compares these characteristics with the field behavior of such rocks in concrete. The paper proposes parameters to classify the different degrees of deformation of quartz. Transmission electron microscopy showed the presence of walls even in slightly deformed quartz, which indicate the presence of the internal paths available to react with the alkaline concrete pore solutions and point to the potential development of an alkali-silica reaction. The presence of the deformation bands in the quartz grains leads to the alkali aggregate reaction occurring more rapidly. The visible spectrophotometer test was performed to evaluate the dissolution potential of the different samples of deformed quartz, which confirmed that the reactivity of the quartz increases as the deformation of the crystalline structure increases. The parameters established in the present study could be verified by analyzing the behavior of reactive and innocuous aggregates from the buildings.

6.
Materials (Basel) ; 10(1)2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28772437

RESUMO

MgO cements have great potential for carbon sequestration as they have the ability to carbonate and gain strength over time. The hydration of reactive MgO occurs at a similar rate as ordinary Portland cement (PC) and forms brucite (Mg(OH)2, magnesium hydroxide), which reacts with CO2 to form a range of hydrated magnesium carbonates (HMCs). However, the formation of HMCs within the MgO-CO2-H2O system depends on many factors, such as the temperature and CO2 concentration, among others, which play an important role in determining the rate and degree of carbonation, the type and stability of the produced HMCs and the associated strength development. It is critical to understand the stability and transformation pathway of HMCs, which are assessed here through the use of X-ray photoelectron spectroscopy (XPS). The effects of the CO2 concentration (in air or 10% CO2), exposure to high temperatures (up to 300 °C) and curing period (one or seven days) are reported. Observed changes in the binding energy (BE) indicate the formation of different components and the transformation of the hydrated carbonates from one form to another, which will influence the final performance of the carbonated blends.

7.
Materials (Basel) ; 10(2)2017 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-28772490

RESUMO

This study assesses the quantitative effects of incorporating high-volume fly ash (HVFA) into tricalcium silicate (C3S) paste on the hydration, degree of silicate polymerization, and Al substitution for Si in calcium silicate hydrate (C-S-H). Thermogravimetric analysis and isothermal conduction calorimetry showed that, although the induction period of C3S hydration was significantly extended, the degree of hydration of C3S after the deceleration period increased due to HVFA incorporation. Synchrotron-sourced soft X-ray spectromicroscopy further showed that most of the C3S in the C3S-HVFA paste was fully hydrated after 28 days of hydration, while that in the pure C3S paste was not. The chemical shifts of the Si K edge peaks in the near-edge X-ray fine structure of C-S-H in the C3S-HVFA paste directly indicate that Al substitutes for Si in C-S-H and that the additional silicate provided by the HVFA induces an enhanced degree of silicate polymerization. This new spectromicroscopic approach, supplemented with 27Al and 29Si magic-angle spinning nuclear magnetic resonance spectroscopy and transmission electron microscopy, turned out to be a powerful characterization tool for studying a local atomic binding structure of C-S-H in C3S-HVFA system and presented results consistent with previous literature.

8.
Nat Mater ; 16(7): 698-699, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28653697
9.
Langmuir ; 33(14): 3404-3412, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28328229

RESUMO

Major developments in concrete technology have been achieved with the use of polycarboxylate-based superplasticizers (PCEs) to improve the concrete rheology without increasing the mix water content. Currently, it is possible to control the fluidity of the fresh concrete and obtain stronger and more durable structures. Therefore, there is a strong incentive to understand the interactions between PCEs and cement hydrates at the atomic scale to design new customized functional PCEs according to the ever-increasing requirements of the concrete industry. Here, the bonding types generated between a PCE with silyl functionalities (PCE-Sil) and a synthetic calcium silicate hydrate (C-S-H) are analyzed using XRD, 29Si NMR spectroscopy, and synchrotron-based techniques, such as NEXAFS and EXAFS. The results indicated that the carboxylic groups present in PCE-Sil interact by a ligand-type bond with calcium, which modified not only the symmetry and coordination number of the calcium located at the surface of C-S-H but also the neighboring silicon atoms of the C-S-H. In addition, the silyl functionalities of the PCE-Sil generated covalent bonds through siloxane bridges between the silanol groups of PCE-Sil and the nonbonding oxygen located at the dimeric sites in C-S-H, forming new bridging silicon sites and subsequently increasing the silicate polymerization.

10.
Sci Rep ; 7: 44032, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28281635

RESUMO

The incorporation of Al and increased curing temperature promotes the crystallization and cross-linking of calcium (alumino)silicate hydrate (C-(A-)S-H), which is the primary binding phase in most contemporary concrete materials. However, the influence of Al-induced structural changes on the mechanical properties at atomistic scale is not well understood. Herein, synchrotron radiation-based high-pressure X-ray diffraction is used to quantify the influence of dreierketten chain cross-linking on the anisotropic mechanical behavior of C-(A-)S-H. We show that the ab-planar stiffness is independent of dreierketten chain defects, e.g. vacancies in bridging tetrahedra sites and Al for Si substitution. The c-axis of non-cross-linked C-(A-)S-H is more deformable due to the softer interlayer opening but stiffens with decreased spacing and/or increased zeolitic water and Ca2+ of the interlayer. Dreierketten chain cross-links act as 'columns' to resist compression, thus increasing the bulk modulus of C-(A-)S-H. We provide the first experimental evidence on the influence of the Al-induced atomistic configurational change on the mechanical properties of C-(A-)S-H. Our work advances the fundamental knowledge of C-(A-)S-H on the lowest level of its hierarchical structure, and thus can impact the way that innovative C-(A-)S-H-based cementitious materials are developed using a 'bottom-up' approach.

11.
Sci Rep ; 7: 43298, 2017 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-28240300

RESUMO

Consecutive eight study phases under the successive presence and absence of UV irradiation, water vapor, and oxygen were conducted to characterize surface changes in the photocatalytic TiO2 powder using near-ambient-pressure X-ray photoelectron spectroscopy (XPS). Both Ti 2p and O 1s spectra show hysteresis through the experimental course. Under all the study environments, the bridging hydroxyl (OHbr) and terminal hydroxyl (OHt) are identified at 1.1-1.3 eV and 2.1-2.3 eV above lattice oxygen, respectively. This enables novel and complementary approach to characterize reactivity of TiO2 powder. The dynamic behavior of surface-bound water molecules under each study environment is identified, while maintaining a constant distance of 1.3 eV from the position of water vapor. In the dark, the continual supply of both water vapor and oxygen is the key factor retaining the activated state of the TiO2 powder for a time period. Two new surface peaks at 1.7-1.8 and 4.0-4.2 eV above lattice oxygen are designated as peroxides (OOH/H2O2) and H2O2 dissolved in water, respectively. The persistent peroxides on the powder further explain previously observed prolonged oxidation capability of TiO2 powder without light irradiation.

12.
Langmuir ; 33(1): 45-55, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-27977205

RESUMO

The workability of fresh Portland cement (PC) concrete critically depends on the reaction of the cubic tricalcium aluminate (C3A) phase in Ca- and S-rich pH >12 aqueous solution, yet its rate-controlling mechanism is poorly understood. In this article, the role of adsorption phenomena in C3A dissolution in aqueous Ca-, S-, and polynaphthalene sulfonate (PNS)-containing solutions is analyzed. The zeta potential and pH results are consistent with the isoelectric point of C3A occurring at pH ∼12 and do not show an inversion of its electric double layer potential as a function of S or Ca concentration, and PNS adsorbs onto C3A, reducing its zeta potential to negative values at pH >12. The S and Ca K-edge X-ray absorption spectroscopy (XAS) data obtained do not indicate the structural incorporation or specific adsorption of SO42- on the partially dissolved C3A solids analyzed. Together with supporting X-ray ptychography and scanning electron microscopy results, a model for C3A dissolution inhibition in hydrated PC systems is proposed whereby the formation of an Al-rich leached layer and the complexation of Ca-S ion pairs onto this leached layer provide the key inhibiting effect(s). This model reconciles the results obtained here with the existing literature, including the inhibiting action of macromolecules such as PNS and polyphosphonic acids upon C3A dissolution. Therefore, this article advances the understanding of the rate-controlling mechanism in hydrated C3A and thus PC systems, which is important to better controlling the workability of fresh PC concrete.

13.
Materials (Basel) ; 9(4)2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-28773376

RESUMO

The research reported herein studied the permeability of concrete containing recycled-concrete aggregate (RA), superfine phosphorous slag (PHS), and ground granulated blast-furnace slag (GGBS) with and without stress. Test results showed that the chloride diffusion coefficient of RA concrete (RAC) without external loads decreased with time, and the permeability of RAC is much lower than that of the reference concrete due to the on-going hydration and the pozzolanic reaction provided by the PHS and GGBS additives in the RAC mixture. The permeability of chloride under flexural load is much more sensitive than that under compressive load due to the differences in porosity and cracking pattern. At low compressive stress levels, the permeability of chloride decreased by the closing of pores and microcracks within RAC specimens. However, in a relatively short time the chloride diffusion coefficient and the chloride content increased rapidly with the increase of compressive stress when it exceeded a threshold stress level of approximate 35% of the ultimate compressive strength. Under flexural stress, the chloride transport capability increased with the increase of stress level and time. At high compressive and flexural stress levels, creep had a significant effect on the permeability of chloride in the RAC specimens due to the damage from the nucleation and propagation of microcracks over time. It is apparent that mortar cracking has more of a significant effect on the chloride transport in concrete than cracking in the interfacial transition zone (ITZ).

14.
Materials (Basel) ; 9(5)2016 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-28773523

RESUMO

Monosulfoaluminate (Ca4Al2(SO4)(OH)12∙6H2O) plays an important role in anion binding in Portland cement by exchanging its original interlayer ions (SO42- and OH-) with chloride ions. In this study, scanning transmission X-ray microscope (STXM), X-ray absorption near edge structure (XANES) spectroscopy, and X-ray diffraction (XRD) were used to investigate the phase change of monosulfoaluminate due to its interaction with chloride ions. Pure monosulfoaluminate was synthesized and its powder samples were suspended in 0, 0.1, 1, 3, and 5 M NaCl solutions for seven days. At low chloride concentrations, a partial dissolution of monosulfoaluminate formed ettringite, while, with increasing chloride content, the dissolution process was suppressed. As the NaCl concentration increased, the dominant mechanism of the phase change became ion exchange, resulting in direct phase transformation from monosulfoaluminate to Kuzel's salt or Friedel's salt. The phase assemblages of the NaCl-reacted samples were explored using thermodynamic calculations and least-square linear combination (LC) fitting of measured XANES spectra. A comprehensive description of the phase change and its dominant mechanism are discussed.

15.
Materials (Basel) ; 9(9)2016 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-28773865

RESUMO

This paper shows the microstructural differences and phase characterization of pure phases and hydrated products of the cubic and orthorhombic (Na-doped) polymorphs of tricalcium aluminate (C3A), which are commonly found in traditional Portland cements. Pure, anhydrous samples were characterized using scanning transmission X-ray microscopy (STXM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) and demonstrated differences in the chemical and mineralogical composition as well as the morphology on a micro/nano-scale. C3A/gypsum blends with mass ratios of 0.2 and 1.9 were hydrated using a water/C3A ratio of 1.2, and the products obtained after three days were assessed using STXM. The hydration process and subsequent formation of calcium sulfate in the C3A/gypsum systems were identified through the changes in the LIII edge fine structure for Calcium. The results also show greater Ca LII binding energies between hydrated samples with different gypsum contents. Conversely, the hydrated samples from the cubic and orthorhombic C3A at the same amount of gypsum exhibited strong morphological differences but similar chemical environments.

16.
Materials (Basel) ; 9(12)2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28774096

RESUMO

The understanding and control of early hydration of tricalcium silicate (C3S) is of great importance to cement science and concrete technology. However, traditional characterization methods are incapable of providing morphological and spectroscopic information about in situ hydration at the nanoscale. Using soft X-ray spectromicroscopy, we report the changes in morphology and molecular structure of C3S at an early stage of hydration. In situ C3S hydration in a wet cell, beginning with induction (~1 h) and acceleration (~4 h) periods of up to ~8 h, was studied and compared with ex situ measurements in the deceleration period after 15 h of curing. Analysis of the near-edge X-ray absorption fine structure showed that the Ca binding energy and energy splitting of C3S changed rapidly in the early age of hydration and exhibited values similar to calcium silicate hydrate (C-S-H). The formation of C-S-H nanoseeds in the C3S solution and the development of a fibrillar C-S-H morphology on the C3S surface were visualized. Following this, silicate polymerization accompanied by C-S-H precipitation produced chemical shifts in the peaks of the main Si K edge and in multiple scattering. However, the silicate polymerization process did not significantly affect the Ca binding energy of C-S-H.

17.
Proc Natl Acad Sci U S A ; 111(52): 18484-9, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25512521

RESUMO

The pyroclastic aggregate concrete of Trajan's Markets (110 CE), now Museo Fori Imperiali in Rome, has absorbed energy from seismic ground shaking and long-term foundation settlement for nearly two millenia while remaining largely intact at the structural scale. The scientific basis of this exceptional service record is explored through computed tomography of fracture surfaces and synchroton X-ray microdiffraction analyses of a reproduction of the standardized hydrated lime-volcanic ash mortar that binds decimeter-sized tuff and brick aggregate in the conglomeratic concrete. The mortar reproduction gains fracture toughness over 180 d through progressive coalescence of calcium-aluminum-silicate-hydrate (C-A-S-H) cementing binder with Ca/(Si+Al) ≈ 0.8-0.9 and crystallization of strätlingite and siliceous hydrogarnet (katoite) at ≥ 90 d, after pozzolanic consumption of hydrated lime was complete. Platey strätlingite crystals toughen interfacial zones along scoria perimeters and impede macroscale propagation of crack segments. In the 1,900-y-old mortar, C-A-S-H has low Ca/(Si+Al) ≈ 0.45-0.75. Dense clusters of 2- to 30-µm strätlingite plates further reinforce interfacial zones, the weakest link of modern cement-based concrete, and the cementitious matrix. These crystals formed during long-term autogeneous reaction of dissolved calcite from lime and the alkali-rich scoriae groundmass, clay mineral (halloysite), and zeolite (phillipsite and chabazite) surface textures from the Pozzolane Rosse pyroclastic flow, erupted from the nearby Alban Hills volcano. The clast-supported conglomeratic fabric of the concrete presents further resistance to fracture propagation at the structural scale.

18.
Proc Natl Acad Sci U S A ; 109(50): 20309-13, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23188803

RESUMO

The mathematical modeling of the flow in nanoporous rocks (e.g., shales) becomes an important new branch of subterranean fluid mechanics. The classic approach that was successfully used in the construction of the technology to develop oil and gas deposits in the United States, Canada, and the Union of Soviet Socialist Republics becomes insufficient for deposits in shales. In the present article a mathematical model of the flow in nanoporous rocks is proposed. The model assumes the rock consists of two components: (i) a matrix, which is more or less an ordinary porous or fissurized-porous medium, and (ii) specific organic inclusions composed of kerogen. These inclusions may have substantial porosity but, due to the nanoscale of pores, tubes, and channels, have extremely low permeability on the order of a nanodarcy (~109-²¹ m² ) or less. These inclusions contain the majority of fluid: oil and gas. Our model is based on the hypothesis that the permeability of the inclusions substantially depends on the pressure gradient. At the beginning of the development of the deposit, boundary layers are formed at the boundaries of the low-permeable inclusions, where the permeability is strongly increased and intensive flow from inclusions to the matrix occurs. The resulting formulae for the production rate of the deposit are presented in explicit form. The formulae demonstrate that the production rate of deposits decays with time following a power law whose exponent lies between -1/2 and -1. Processing of experimental data obtained from various oil and gas deposits in shales demonstrated an instructive agreement with the prediction of the model.

19.
Proc Natl Acad Sci U S A ; 103(31): 11467-72, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16864774

RESUMO

Reinforced concrete structures exposed to aggressive environments often require repair or retrofit even though they were designed to last >50 years. This statement is especially true for structures subjected to sulfate attack. It is critical that fundamental models of life prediction be developed for durability of concrete. Based on experimental results obtained over a 40-year period, scaling and saturation laws were formulated for concrete exposed to sulfate solution. These features have not been considered in current models used to predict life cycle of concrete exposed to aggressive environment. The mathematical analysis shows that porous concrete made with high and moderate water-to-cement ratios develops a definite scaling law after an initiation time. The scaling coefficient depends on the cement composition but does not depend on the original water-to-cement ratio. Dense concrete made with low water-to-cement ratios develops a cyclic saturation curve. An index for "potential of damage" is created to allow engineers to design concrete structures with better precision and cement chemists to develop portland cements with optimized composition.

20.
J Colloid Interface Sci ; 248(2): 521-3, 2002 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16290558

RESUMO

The surface modification of tire rubber after treatment with saturated NaOH aqueous solution was investigated by HATR infrared analysis, potentiometric titration, and contact angle measurements. Infrared analysis of the powdered treated rubber showed a decrease in absorption at 1540, 1450, and 1395 cm(-1). This decrease is attributed to the removal of zinc stearate, an additive present in tire formulations that often migrates and diffuses to the surface, resulting in poor adhesion between the rubber and other materials. The potentiometric titration of the suspension of powdered rubber in 0.1 M NaCl showed that more hydrochloric acid was consumed by the untreated rubber, most likely a result of the hyrdrolysis of the zinc stearate to the organic acid. Contact angles of flat tire pieces showed an homogeneity enhancement of the treated rubber surface. The decrease of the zinc stearate on the treated rubber surface explains the improvement in the adhesion of this material to the cement matrix, observed in a previous research. The promising results of this study are a starting point for future research on incorporating rubber particles into cementitious materials as a means of successfully utilizing the vast amounts of tire waste currently in landfills.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA