Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small Methods ; 8(1): e2301025, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37814377

RESUMO

Over the past decade, there has been a rising interest in utilizing functionalized porous polymers for sensor applications. By incorporating functional groups into nanostructured materials like hydrogels, nanosheets, and nanopores, exciting new opportunities have emerged for biomarker detection. The ability of functionalized polymers to undergo physical changes and deformations makes them perfect for modulating optical signals. This chemical mechanism enables the creation of biocompatible sensors for in situ biomarker measurement. Here a comprehensive overview of the current publication trends is provided in functionalized polymers, encompassing functional groups that can induce measurable physical deformations. It explores various materials categorized based on their detection targets, which include proteins, carbohydrates, ions, and deoxyribonucleic acid. As such, this work serves as a valuable reference for the development of functionalized polymer-based sensors.


Assuntos
Nanoporos , Polímeros , Proteínas , Carboidratos , Hidrogéis
2.
Biosens Bioelectron ; 207: 114206, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35339821

RESUMO

Continuous monitoring of physiological conditions and biomarkers via optical holographic sensors is an area of growing interest to facilitate the expansion of personalised medicine. Here, a facile laser-induced dual polymerization method is developed to fabricate holographic hydrogel sensors for the continuous and reversible colorimetric determination of pH variations over a physiological range in serum (pH 7-9). Readout parameters simulated through a Finite-difference time-domain Yee's algorithm retrieve the spectral response through expansion. Laser lithography of holographic hydrogel sensor fabrication is achieved via a single 355 nm laser pulse to initiate polymerization of ultrafine hydrogel fringes. Eliminating the requirement for complex processing of toxic components and streamlining the synthetic procedure provides a simpler route to mass production. Optimised pH-responsive hydrogels contain amine bearing functional co-monomers demonstrating reversible Bragg wavelength shifts of 172 nm across the entire visible wavelength range with pH variation from 7.0 to 9.0 upon illumination with broadband light. Photolithographic recording of information shows the ability to convey detailed information to users for qualitative identification of pH. Holographic sensor reversibility over 20 cycles showed minimal variation in replay wavelength supporting reliable and consistent readout, with optimised sensors showing rapid response times of <5 min. The developed sensors demonstrate the application to continuous monitoring in biological fluids, withstanding interference from electrolytes, saccharides, and proteins colorimetrically identifying bovine serum pH over a physiological range. The holographic sensors benefit point-of-care pH analysis of biological analytes which could be applied to the identification of blood gas disorders and wound regeneration monitoring through colorimetric readouts.


Assuntos
Técnicas Biossensoriais , Holografia , Técnicas Biossensoriais/métodos , Holografia/métodos , Hidrogéis , Óptica e Fotônica , Fótons
3.
Opt Express ; 29(9): 13681-13695, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33985098

RESUMO

A holographic automotive head-up display was developed to project 2D and 3D ultra-high definition (UHD) images using LiDAR data in the driver's field of view. The LiDAR data was collected with a 3D terrestrial laser scanner and was converted to computer-generated holograms (CGHs). The reconstructions were obtained with a HeNe laser and a UHD spatial light modulator with a panel resolution of 3840×2160 px for replay field projections. By decreasing the focal distance of the CGHs, the zero-order spot was diffused into the holographic replay field image. 3D holograms were observed floating as a ghost image at a variable focal distance with a digital Fresnel lens into the CGH and a concave lens.

4.
ACS Sens ; 6(3): 915-924, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33557517

RESUMO

Holographic sensors are two-dimensional (2D) photonic crystals that diffract narrow-band light in the visible spectrum to quantify analytes in aqueous solutions. Here, a holographic fabrication setup was developed to produce holographic sensors through a doubly polymerization system of a poly-2-hydroxyethyl methacrylate hydrogel film using a pulsed Nd:YAG laser (λ = 355 nm, 5 ns, 100 mJ). Wavelength shifts of holographic Bragg peak in response to alcohol species (0-100 vol %) were characterized. Diffraction spectra showed that the holographic sensors could be used for short-chain alcohols at concentrations up to 60 vol %. The reversibility of the sensor was demonstrated, exhibiting a response time of 7.5 min for signal saturation. After 30 cycles, the Bragg peak and color remained the same in both 20 and 60 vol %. The fabrication parameters were simulated in MATLAB using a 2D finite-difference time-domain algorithm to model the interference pattern and energy flux profile of laser beam recording in the hydrogel medium. This work demonstrates a particle-free holographic sensor that offers continuous, reversible, and rapid colorimetric readouts for the real-time quantification of alcohols.


Assuntos
Holografia , Colorimetria , Hidrogéis , Óptica e Fotônica , Fótons
5.
ACS Nano ; 13(12): 14459-14467, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31804798

RESUMO

Cell surface engineering is an emerging technology to encapsulate cells in order to enhance their functions. However, methods for reversible encapsulation of cells with abiotic functionalities are rare. Herein, we describe a phenylboronic acid based click reaction for encapsulation of single yeast cells using mesoporous silica nanoparticles (MSNs). This encapsulation does not impact natural growth of the cells and leads to a significant enhancement of cell survival in a variety of hostile environments. Owing to the glucose-responsiveness of the boronate ester bond between cell surface polysaccharides and B(OH)2-grafted MSNs, encapsulation was reversible by addition or removal of glucose. This effort offers living cells effective protection under harsh conditions and enables reversible assembling-detaching of abiotic functions.


Assuntos
Células Imobilizadas/citologia , Química Click/métodos , Saccharomyces cerevisiae/citologia , Ácidos Borônicos/química , Viabilidade Microbiana , Nanopartículas/química , Nanopartículas/ultraestrutura , Porosidade , Saccharomyces cerevisiae/ultraestrutura , Dióxido de Silício/química
6.
Nat Mater ; 18(6): 650, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31076666

RESUMO

In the version of this Article originally published, the last sentence of the acknowledgements incorrectly read 'L.V. acknowledges the support of a Marie Skodowska-Curie fellowship (N-SHEAD)'; it should have read 'L.V. and D.S. acknowledge the support of Marie Sklodowska-Curie fellowships, N-SHEAD and S-OMMs, respectively'.

7.
RSC Adv ; 9(20): 11186-11193, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35520217

RESUMO

Continuous monitoring of biomarkers in a quantitative manner at point-of-care settings can advance early diagnosis in medicine. Contact lenses offer a minimally-invasive platform to continuously detect biomarkers in tear fluid. Microfluidic components as lab-on-a-chip technology have the potential to transform contact lenses into fully-integrated multiplexed sensing devices. Here, simple and complex microchannels are created in scleral lenses that perform microfluidic operations via capillary action. The engraving of microchannels in scleral lenses were performed by laser micromilling, where a predictive computational model was developed to simulate the effect of laser power and exposure time on polymer behavior. Experimentally varying the CO2 laser power (1.2-3.6 W) and speed (38-100 mm s-1) allowed the micromilling of concave microchannels with groove depths of 10-240 µm and widths of 35-245 µm on polymetric substrates. The demonstrated laser micromilled circuitry in scleral lenses included linear channels, T/Y junctions, multiplexed arrays, mixers, and spiral channels, as well as serially organized multicomponent channels. Capillary forces acting in the microchannels allowed flowing rhodamine dye within the microfluidic components, which was visualized by optical microscopy in reflection and transmission modes simultaneously. The developed microfluidic components in scleral lenses may enable tear sampling, storage, analysis, and multiplexed detection capabilities for continuous monitoring applications.

8.
Chem Sci ; 9(21): 4730-4735, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29910923

RESUMO

Single cell surface engineering provides the most efficient, non-genetic strategy to enhance cell stability. However, it remains a huge challenge to improve cell stability in complex artificial environments. Here, a soft biohybrid interfacial layer is fabricated on individual living-cell surfaces by their exposure to a suspension of gold nanoparticles and l-cysteine to form a protecting functional layer to which porous silica layers were bound yielding pores with a diameter of 3.9 nm. The living cells within the bilayered nanoshells maintained high viability (96 ± 2%) as demonstrated by agar plating, even after five cycles of simultaneous exposure to high temperature (40 °C), lyticase and UV light. Moreover, yeast cells encapsulated in bilayered nanoshells were more recyclable than native cells due to nutrient storage in the shell.

9.
Nanoscale ; 10(22): 10683-10690, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29845175

RESUMO

The optical bandgap properties of vertically-aligned carbon nanotube (VACNT) arrays were probed through their interaction with white light, with the light reflected from the rotating arrays measured with a spectrometer. The precise deterministic control over the structure of vertically-aligned carbon nanotube arrays through electron beam lithography and well-controlled growth conditions brings with it the ability to produce exotic photonic crystals over a relatively large area. The characterisation of the behaviour of these materials in the presence of light is a necessary first step toward application. Relatively large area array structures of high-quality VACNTs were fabricated in square, hexagonal, circular and pseudorandom patterned arrays with length scales on the order of those of visible light for the purpose of investigating how they may be used to manipulate an impinging light beam. In order to investigate the optical properties of these arrays a set of measurement apparatus was designed which allowed the accurate measurement of their optical bandgap characteristics. The patterned samples were rotated under the illuminating white light beam, revealing interesting optical bandgap results caused by the changing patterns and relative positions of the scattering elements (VACNTs).

10.
Small ; 14(15): e1704363, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29521022

RESUMO

Contact lens is a ubiquitous technology used for vision correction and cosmetics. Sensing in contact lenses has emerged as a potential platform for minimally invasive point-of-care diagnostics. Here, a microlithography method is developed to fabricate microconcavities and microchannels in a hydrogel-based contact lens via a combination of laser patterning and embedded templating. Optical microlithography parameters influencing the formation of microconcavities including ablation power (4.3 W) and beam speed (50 mm s-1 ) are optimized to control the microconcavity depth (100 µm) and diameter (1.5 mm). The fiber templating method allows the production of microchannels having a diameter range of 100-150 µm. Leak-proof microchannel and microconcavity connections in contact lenses are validated through flow testing of artificial tear containing fluorescent microbeads (Ø = 1-2 µm). The microconcavities of contact lenses are functionalized with multiplexed fluorophores (2 µL) to demonstrate optical excitation and emission capability within the visible spectrum. The fabricated microfluidic contact lenses may have applications in ophthalmic monitoring of metabolic disorders at point-of-care settings and controlled drug release for therapeutics.


Assuntos
Lentes de Contato , Microfluídica/métodos , Fotografação
11.
Nanoscale ; 9(39): 15159, 2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-28972611

RESUMO

Correction for 'Femtosecond laser ablation of transparent microphotonic devices and computer-generated holograms' by Tawfiq Alqurashi, et al., Nanoscale, 2017, 9, 13808-13819.

12.
Nanoscale ; 9(36): 13808-13819, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28891581

RESUMO

Femtosecond laser ablation allows direct patterning of engineering materials in industrial settings without requiring multistage processes such as photolithography or electron beam lithography. However, femtosecond lasers have not been widely used to construct volumetric microphotonic devices and holograms with high reliability and cost efficiency. Here, a direct femtosecond laser writing process is developed to rapidly produce transmission 1D/2D gratings, Fresnel Zone Plate lenses, and computer-generated holograms. The optical properties including light transmission, angle-dependent resolution, and light polarization effects for the microphotonic devices have been characterized. Varying the depth of the microgratings from 400 nm to 1.5 µm allowed the control over their transmission intensity profile. The optical properties of the 1D/2D gratings were validated through a geometrical theory of diffraction model involving 2D phase modulation. The produced Fresnel lenses had transmission efficiency of ∼60% at normal incidence and they preserved the polarization of incident light. The computer-generated holograms had an average transmission efficiency of 35% over the visible spectrum. These microphotonic devices had wettability resistance of contact angle ranging from 44° to 125°. These devices can be used in a variety of applications including wavelength-selective filters, dynamic displays, fiber optics, and biomedical devices.

13.
Nat Mater ; 16(11): 1127-1135, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28892055

RESUMO

Recently, there has been a drive to design and develop fully tunable metamaterials for applications ranging from new classes of sensors to superlenses among others. Although advances have been made, tuning and modulating the optical properties in real time remains a challenge. We report on the first realization of a reversible electrotunable liquid mirror based on voltage-controlled self-assembly/disassembly of 16 nm plasmonic nanoparticles at the interface between two immiscible electrolyte solutions. We show that optical properties such as reflectivity and spectral position of the absorption band can be varied in situ within ±0.5 V. This observed effect is in excellent agreement with theoretical calculations corresponding to the change in average interparticle spacing. This electrochemical fully tunable nanoplasmonic platform can be switched from a highly reflective 'mirror' to a transmissive 'window' and back again. This study opens a route towards realization of such platforms in future micro/nanoscale electrochemical cells, enabling the creation of tunable plasmonic metamaterials.

14.
Adv Mater ; 29(15)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28195436

RESUMO

Hydrogel optical fibers are utilized for continuous glucose sensing in real time. The hydrogel fibers consist of poly(acrylamide-co-poly(ethylene glycol) diacrylate) cores functionalized with phenylboronic acid. The complexation of the phenylboronic acid and cis-diol groups of glucose enables reversible changes of the hydrogel fiber diameter. The analyses of light propagation loss allow for quantitative glucose measurements within the physiological range.

15.
Nat Commun ; 7: 12002, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27337216

RESUMO

Arrangements of nanostructures in well-defined patterns are the basis of photonic crystals, metamaterials and holograms. Furthermore, rewritable optical materials can be achieved by dynamically manipulating nanoassemblies. Here we demonstrate a mechanism to configure plasmonic nanoparticles (NPs) in polymer media using nanosecond laser pulses. The mechanism relies on optical forces produced by the interference of laser beams, which allow NPs to migrate to lower-energy configurations. The resulting NP arrangements are stable without any external energy source, but erasable and rewritable by additional recording pulses. We demonstrate reconfigurable optical elements including multilayer Bragg diffraction gratings, volumetric photonic crystals and lenses, as well as dynamic holograms of three-dimensional virtual objects. We aim to expand the applications of optical forces, which have been mostly restricted to optical tweezers. Holographic assemblies of nanoparticles will allow a new generation of programmable composites for tunable metamaterials, data storage devices, sensors and displays.

16.
Anal Chem ; 87(10): 5101-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25710792

RESUMO

The real-time sensing of metal ions at point of care requires integrated sensors with low energy and sample consumption, reversibility, and rapid recovery. Here, we report a photonic nanosensor that reversibly and quantitatively reports on variation in the concentrations of Pb(2+) and Cu(2+) ions in aqueous solutions (<500 µL) in the visible region of the spectrum (λ(max) ≈ 400-700 nm). A single 6 ns laser pulse (λ = 532 nm) was used to pattern an ∼10 µm thick photosensitive recording medium. This formed periodic AgBr nanocrystal (ø ∼ 5-20 nm) concentrated regions, which produced Bragg diffraction upon illumination with a white light source. The sensor functionalized with 8-hydroxyquinoline allowed sensing through inducing Donnan osmotic pressure and tuning its lattice spacing. The sensor quantitatively measured Pb(2+) and Cu(2+) ion concentrations within the dynamic range of 0.1-10.0 mM with limits of detection of 11.4 and 18.6 µM in under 10 min. The sensor could be reset in 3 min and was reused at least 100 times without compromising its accuracy. The plasmonic nanosensor represents a simple and label-free analytical platform with potential scalability for applications in medical diagnostics and environmental monitoring.


Assuntos
Cobre/análise , Chumbo/análise , Nanotecnologia/instrumentação , Fótons , Colorimetria , Hidrogéis/química , Modelos Moleculares , Conformação Molecular , Nanopartículas/química , Água/química
17.
Proc Natl Acad Sci U S A ; 111(35): 12679-83, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25122675

RESUMO

This work presents an original approach to create holograms based on the optical scattering of plasmonic nanoparticles. By analogy to the diffraction produced by the scattering of atoms in X-ray crystallography, we show that plasmonic nanoparticles can produce a wave-front reconstruction when they are sampled on a diffractive plane. By applying this method, all of the scattering characteristics of the nanoparticles are transferred to the reconstructed field. Hence, we demonstrate that a narrow-band reconstruction can be achieved for direct white light illumination on an array of plasmonic nanoparticles. Furthermore, multicolor capabilities are shown with minimal cross-talk by multiplexing different plasmonic nanoparticles at subwavelength distances. The holograms were fabricated from a single subwavelength thin film of silver and demonstrate that the total amount of binary information stored in the plane can exceed the limits of diffraction and that this wavelength modulation can be detected optically in the far field.


Assuntos
Arte , Holografia/métodos , Nanopartículas/química , Pintura , Cor , Metilmetacrilato/química , Espalhamento de Radiação , Dióxido de Silício/química , Prata/química , Ressonância de Plasmônio de Superfície/métodos , Difração de Raios X/métodos
18.
Nano Lett ; 14(6): 3587-93, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24844116

RESUMO

Developing noninvasive and accurate diagnostics that are easily manufactured, robust, and reusable will provide monitoring of high-risk individuals in any clinical or point-of-care environment. We have developed a clinically relevant optical glucose nanosensor that can be reused at least 400 times without a compromise in accuracy. The use of a single 6 ns laser (λ = 532 nm, 200 mJ) pulse rapidly produced off-axis Bragg diffraction gratings consisting of ordered silver nanoparticles embedded within a phenylboronic acid-functionalized hydrogel. This sensor exhibited reversible large wavelength shifts and diffracted the spectrum of narrow-band light over the wavelength range λpeak ≈ 510-1100 nm. The experimental sensitivity of the sensor permits diagnosis of glucosuria in the urine samples of diabetic patients with an improved performance compared to commercial high-throughput urinalysis devices. The sensor response was achieved within 5 min, reset to baseline in ∼10 s. It is anticipated that this sensing platform will have implications for the development of reusable, equipment-free colorimetric point-of-care diagnostic devices for diabetes screening.

19.
ACS Nano ; 8(3): 2929-35, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24559189

RESUMO

Devitrite is a novel material produced by heat treatment of commercial soda-lime-silica glass. It consists of fans of needle-like crystals which can extend up to several millimeters and have interspacings of up to a few hundred nanometers. To date, only the material properties of devitrite have been reported, and there has been a distinct lack of research on using it for optical applications. In this study, we demonstrate that randomly oriented fans of devitrite crystals can act as highly efficient diffusers for visible light. Devitrite crystals produce phase modulation of light because of their relatively high anisotropy. The nanoscale spacings between these needles enable light to be diffused to large scattering angles. Experimentally measured results suggest that light diffusion patterns with beam widths of up to 120° are produced. Since devitrite is an inexpensive material to produce, it has the potential to be used in a variety of commercial applications.

20.
Nano Lett ; 14(1): 294-8, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24283368

RESUMO

We prove theoretically and experimentally the concept of polarization holography by producing visible diffraction through radiation emitted by plasmonic nanoantennas. We show a methodology to selectively activate the nanoantenna emission by controlling the orientation of the electric field of a beam. Additionally, we demonstrate that it is possible to superpose two independent transverse nanoantennas in the same plane without producing interference in their radiated field. Hence, we introduce an alternative view to the traditional concept of holography where fringes (or diffractive units) are band-limited to half the wavelength.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA