Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38562859

RESUMO

Candida auris is an emerging nosocomial fungal pathogen associated with life-threatening invasive disease due to its persistent colonization, high level of transmissibility and multi-drug resistance. Aggregative and non-aggregative growth phenotypes for C. auris strains with different biofilm forming abilities, drug susceptibilities and virulence characteristics have been described. Using comprehensive transcriptional analysis we identified key cell surface adhesins that were highly upregulated in the aggregative phenotype during in vitro and in vivo grown biofilms using a mouse model of catheter infection. Phenotypic and functional evaluations of generated null mutants demonstrated crucial roles for the adhesins Als5 and Scf1 in mediating cell-cell adherence, coaggregation and biofilm formation. While individual mutants were largely non-aggregative, in combination cells were able to co-adhere and aggregate, as directly demonstrated by measuring cell adhesion forces using single-cell atomic force spectroscopy. This co-adherence indicates their role as complementary adhesins, which despite their limited similarity, may function redundantly to promote cell-cell interaction and biofilm formation. Functional diversity of cell wall proteins may be a form of regulation that provides the aggregative phenotype of C. auris with flexibility and rapid adaptation to the environment, potentially impacting persistence and virulence.

2.
bioRxiv ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38562758

RESUMO

Candida auris is an emerging nosocomial fungal pathogen associated with life-threatening invasive disease due to its persistent colonization, high level of transmissibility and multi-drug resistance. Aggregative and non-aggregative growth phenotypes for C. auris strains with different biofilm forming abilities, drug susceptibilities and virulence characteristics have been described. Using comprehensive transcriptional analysis we identified key cell surface adhesins that were highly upregulated in the aggregative phenotype during in vitro and in vivo grown biofilms using a mouse model of catheter infection. Phenotypic and functional evaluations of generated null mutants demonstrated crucial roles for the adhesins Als5 and Scf1 in mediating cell-cell adherence, coaggregation and biofilm formation. While individual mutants were largely non-aggregative, in combination cells were able to co-adhere and aggregate, as directly demonstrated by measuring cell adhesion forces using single-cell atomic force spectroscopy. This co-adherence indicates their role as complementary adhesins, which despite their limited similarity, may function redundantly to promote cell-cell interaction and biofilm formation. Functional diversity of cell wall proteins may be a form of regulation that provides the aggregative phenotype of C. auris with flexibility and rapid adaptation to the environment, potentially impacting persistence and virulence.

3.
Methods Mol Biol ; 2658: 53-64, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37024695

RESUMO

Candidiasis, infections caused by Candida spp., represents one of the most common nosocomial infections afflicting an expanding number of compromised patients. Antifungal therapeutic options are few and show limited efficacy. Moreover, biofilm formation is frequently associated with different manifestations of candidiasis and further complicates therapy. Thus, there is an urgent need for new effective therapeutic agents, particularly those with anti-biofilm activity. Here we describe the development of a novel, simple, fast, economical, and highly reproducible 384-well microtiter plate model for the formation of both Candida albicans and Candida auris biofilms and its application in high-throughput screening (HTS) techniques.


Assuntos
Candida , Candidíase , Humanos , Ensaios de Triagem em Larga Escala/métodos , Candida albicans , Antifúngicos/farmacologia , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Biofilmes , Testes de Sensibilidade Microbiana
5.
Front Cell Infect Microbiol ; 12: 831744, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310855

RESUMO

The oral cavity remains an underappreciated site for SARS-CoV-2 infection despite the myriad oral conditions observed in COVID-19 patients. Recently, replicating SARS-CoV-2 was found inside salivary epithelial cells resulting in inflammation and atrophy of salivary glands. Saliva possesses healing properties crucial for maintaining the health of the oral mucosa. Specifically, salivary antimicrobial peptides, most notable, histatin-5 exclusively produced in salivary glands, plays a vital role in innate immunity against colonizing microbial species. The demonstration of SARS-CoV-2 destruction of gland tissue where histatin-5 is produced strongly indicate that histatin-5 production is compromised due to COVID-19. Here we present a case of a patient presenting with unexplained chronic oral dysesthesia and dysgeusia post-recovery from COVID-19. To explore potential physiological mechanisms behind the symptoms, we comparatively analyzed saliva samples from the patient and matched healthy subject for histatin-5 and key cytokines. Findings demonstrated significantly reduced histatin-5 levels in patient's saliva and activation of the Th17 inflammatory pathway. As histatin-5 exhibits potent activity against the opportunistic oral pathogen Candida albicans, we evaluated saliva potency against C. albicans ex vivo. Compared to control, patient saliva exhibited significantly reduced anti-candidal efficacy. Although speculative, based on history and salivary analysis we hypothesize that salivary histatin-5 production may be compromised due to SARS-CoV-2 mediated salivary gland destruction. With the current lack of emphasis on implications of COVID-19 on oral health, this report may provide lacking mechanistic insights that may lead to reassessment of risks for oral opportunistic infections and mucosal inflammatory processes in acutely-ill and recovered COVID-19 patients.


Assuntos
COVID-19 , COVID-19/complicações , Humanos , Boca , SARS-CoV-2 , Saliva/química , Proteínas e Peptídeos Salivares/análise
6.
J Oral Pathol Med ; 51(5): 413-420, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35347760

RESUMO

Fungi, a diverse group of eukaryotic organisms, play distinct roles in health and disease. Recent advances in the field of mycobiology have enabled the characterization of the "human mycobiome." The human mycobiome has extensively been studied in various disease models. However, to date, the role of the oral mycobiome in oral carcinogenesis has yet to be elucidated. Candida albicans, the most common oral colonizer, has been speculated to display tumorigenic effects; however, the literature lacks consistent documentation from mechanistic studies on whether oral mycobiota act as drivers, facilitators, or passive colonizers of oral premalignancy and cancer. This review article provides an overview of existing hypothesis-driven mechanistic models that outline the complex interplay between the oral mycobiome and oral epithelial dysplasia as well as their potential clinical implications.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Micobioma , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço
7.
J Microbiol Methods ; 194: 106420, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35101438

RESUMO

Microbial biofilms are structured communities of surface-associated microbial populations embedded in a matrix of extracellular polysaccharides that provide protection for biofilm cells. Among the wide plethora of microbial species adept at forming biofilms, the fungal pathogen Candida albicans (C. albicans), is one of the most notable. C. albicans biofilm development occurs in a series of sequential steps over a period of 24 h. Various quantitative and microscopic methods are available for the monitoring and evaluation of biofilms, including several innovative real-time methods for the evaluation of the cell-to-cell dynamics occurring during biofilm formation. These methods utilize biosensors which capture electrical, acoustic, and reflectance signals in bacterial populations (Li et al., 2021; Li et al., 2020; Kim et al., 2021; Paredes et al., 2021; Reipa et al., 2021). Additionally, machine learning, deep learning and other computational approaches have progressively been incorporated in the field of microbiology (Qu et al., 2019; Goodswen et al., 2021; Zhang et al., 2021; Ghannam and Techtmann, 2021; Rani et al., 2021; Berg et al., 2019) including some studies in biofilms (Buetti-Dinh et al., 2019; Srivastava et al., 2020; Hartmann et al., 2021; Dimauro et al., 2021) but given the potential of machine and deep learning, this niche is in large need of collaborative work between microbiology and engineering or physics experts to propel machine learning to a higher level. Therefore, whilst promising advances have been made, there is an urgent need for extensive development to take place to study and comprehend the complex interaction of microbial pathogens during biofilm formation. Specifically, there is a lot left to be understood about biofilm energy kinetics, and who the active microbial populations are. We infer that biofilm formation is an extremely diverse phenomenon and that each microorganism exerts different pathways to form a biofilm. Thus, we reasoned on the need for a model that would allow us to study the energy kinetics during C. albicans biofilm development. Modal decomposition techniques (MDTs) commonly used in fluid mechanics are gaining popularity outside their original field and might help decipher some of the dynamically relevant structures of biofilm formation. MDTs permit the identification of coherent structures in fluids and have been used in complex applications of information obtained during a particular time-lapse. A common MDT, Proper Orthogonal Decomposition (POD), can be used in reduced order modelling and machine learning applications. POD allows decomposition of a physical field influenced by different variables that may affect its physical properties. We aimed to evaluate the applicability of this technique in the analysis of energy kinetics during microbial biofilm formation, more specifically C. albicans biofilms. Using POD, we were able to easily distinguish visually distinct modes of growth of C. albicans cells in PBS and RPMI in terms of energy accumulation during the kinetic experiment. Comparing both PBS and RPMI, RPMI contains more energetic and dynamically relevant structures than PBS.


Assuntos
Biofilmes , Candida albicans
8.
Virulence ; 12(1): 835-851, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33682623

RESUMO

Biofilm-associated polymicrobial infections tend to be challenging to treat. Candida albicans and Staphylococcus aureus are leading pathogens due to their ability to form biofilms on medical devices. However, the therapeutic implications of their interactions in a host is largely unexplored. In this study, we used a mouse subcutaneous catheter model for in vivo-grown polymicrobial biofilms to validate our in vitro findings on C. albicans-mediated enhanced S. aureus tolerance to vancomycin in vivo. Comparative assessment of S. aureus recovery from catheters with single- or mixed-species infection demonstrated failure of vancomycin against S. aureus in mice with co-infected catheters. To provide some mechanistic insights, RNA-seq analysis was performed on catheter biofilms to delineate transcriptional modulations during polymicrobial infections. C. albicans induced the activation of the S. aureus biofilm formation network via down-regulation of the lrg operon, repressor of autolysis, and up-regulation of the ica operon and production of polysaccharide intercellular adhesin (PIA), indicating an increase in eDNA production, and extracellular polysaccharide matrix, respectively. Interestingly, virulence factors important for disseminated infections, and superantigen-like proteins were down-regulated during mixed-species infection, whereas capsular polysaccharide genes were up-regulated, signifying a strategy favoring survival, persistence and host immune evasion. In vitro follow-up experiments using DNA enzymatic digestion, lrg operon mutant strains, and confocal scanning microscopy confirmed the role of C. albicans-mediated enhanced eDNA production in mixed-biofilms on S. aureus tolerance to vancomycin. Combined, these findings provide mechanistic insights into the therapeutic implications of interspecies interactions, underscoring the need for novel strategies to overcome limitations of current therapies.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Infecções Relacionadas a Cateter/tratamento farmacológico , Coinfecção/tratamento farmacológico , Coinfecção/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Candida albicans/genética , Infecções Relacionadas a Cateter/microbiologia , Catéteres/microbiologia , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Staphylococcus aureus/genética , Fatores de Virulência
10.
mSphere ; 5(4)2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32759340

RESUMO

The newly emerged Candida species Candida auris is associated with an exponential rise in life-threatening invasive disease in health care facilities worldwide. Unlike other species, C. auris exhibits a high level of transmissibility, multidrug resistance, and persistence in the environment, yet little is known about its pathogenesis largely due to limited data from animal models. Based on in vitro biofilm evaluations and confocal laser scanning microscopy, C. auris phenotypes with different biofilm-forming abilities were identified, indicating potential clinical implications. Using clinically relevant murine models of implanted catheter, oral, and intraperitoneal infections, we comparatively evaluated the host site-specific pathogenic potential of C. auris phenotypes and Candida albicans Based on the results of microbial recovery and scanning electron microscopy analysis of explanted catheters, compared to C. albicans, C. auris more avidly adhered and formed biofilms on catheters. However, although C. auris adhered to oral tissue ex vivo, unlike C. albicans, it failed to colonize the oral cavity in vivo, as demonstrated by microbial recovery and tissue histopathology analysis. In contrast, recovery from peritoneal lavage fluid and kidneys during time course experiments demonstrated that C. auris persisted longer in the peritoneal cavity and kidneys. Although there were clear niche-specific differences in pathogenic features between C. auris and C. albicans, no significant differences were noted between the C. auris phenotypes in vivo The combined findings highlight unique niche-specific pathogenic traits for C. auris warranting further investigations. Understanding the factors contributing to the rise of C. auris as a nosocomial pathogen is critical for controlling the spread of this species.IMPORTANCE The newly emerged Candida species C. auris has been associated with an exponential rise in invasive disease in health care facilities worldwide with a mortality rate approaching 60%. C. auris exhibits a high level of transmissibility, multidrug resistance, and persistence in hospital environments, yet little is known about its pathogenesis largely due to limited data from animal studies. We used clinically relevant murine models of infection to comparatively evaluate the host niche-specific pathogenic potential of C. auris and C. albicans Findings demonstrated that C. auris adheres more avidly, forming robust biofilms on catheters implanted in mice. However, although C. auris adhered to oral tissue ex vivo, it failed to colonize the oral cavity in vivo In contrast, in the intraperitoneal infection model, C. auris persisted longer in the peritoneal cavity and kidneys. Understanding the host-pathogen factors contributing to the rise of C. auris as a nosocomial pathogen is critical for controlling the spread of this species.


Assuntos
Candida albicans/patogenicidade , Candida/patogenicidade , Candidíase/microbiologia , Interações Hospedeiro-Patógeno , Animais , Biofilmes/crescimento & desenvolvimento , Candida/ultraestrutura , Candida albicans/ultraestrutura , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Fenótipo , Virulência
12.
Pathog Dis ; 78(4)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32643757

RESUMO

Candida auris is a new fungal species that has puzzlingly and simultaneously emerged on five continents. Since its identification in 2009, the scientific community has witnessed an exponential emergence of infection episodes and outbreaks in healthcare facilities world-wide. Candida auris exhibits several concerning features compared to other related Candida species, including persistent colonization of skin and nosocomial surfaces, ability to resist common disinfectants and to spread rapidly among patients. Resistance to multiple drug classes and misidentification by available laboratory identification systems has complicated clinical management, and outcomes of infection have generally been poor with mortality rates approaching 68%. Currently, the origins of C. auris are unclear, and therefore, it is impossible to determine whether environmental and climactic changes were contributing factors in its recent emergence as a pathogen. Nevertheless, a robust response involving rapid diagnostics, prompt interventions and implementation of precautions, are paramount in curtailing the spread of  infections by this fungal species. Importantly, there is a pressing need for the development of new antifungal drugs. In this article, we present a brief overview highlighting some of the important aspects of C. auris epidemiology, pathogenesis and its puzzling global emergence.


Assuntos
Biofilmes/efeitos dos fármacos , Candida , Candidíase/epidemiologia , Candidíase/microbiologia , Farmacorresistência Fúngica Múltipla , Animais , Antifúngicos/farmacologia , Candidíase/diagnóstico , Técnicas de Laboratório Clínico , Humanos
13.
Front Microbiol ; 11: 307, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32256460

RESUMO

The oral cavity is a complex environment harboring diverse microbial species that often co-exist within biofilms formed on oral surfaces. Within a biofilm, inter-species interactions can be synergistic in that the presence of one organism generates a niche for another enhancing colonization. Among these species are the opportunistic fungal pathogen Candida albicans and the bacterial species Streptococcus mutans, the etiologic agents of oral candidiasis and dental caries, respectively. Recent studies have reported enhanced prevalence of C. albicans in children with caries indicating potential clinical implications for this fungal-bacterial interaction. In this study, we aimed to specifically elucidate the role of C. albicans-derived polysaccharide biofilm matrix components in augmenting S. mutans colonization and mixed biofilm formation. Comparative evaluations of single and mixed species biofilms demonstrated significantly enhanced S. mutans retention in mixed biofilms with C. albicans. Further, S. mutans single species biofilms were enhanced upon exogenous supplementation with purified matrix material derived from C. albicans biofilms. Similarly, growth in C. albicans cell-free spent biofilm culture media enhanced S. mutans single species biofilm formation, however, the observed increase in S. mutans biofilms was significantly affected upon enzymatic digestion of polysaccharides in spent media, identifying C. albicans secreted polysaccharides as a key factor in mediating mixed biofilm formation. The enhanced S. mutans biofilms mediated by the various C. albicans effectors was also demonstrated using confocal laser scanning microscopy. Importantly, a clinically relevant mouse model of oral co-infection was adapted to demonstrate the C. albicans-mediated enhanced S. mutans colonization in a host. Analyses of harvested tissue and scanning electron microscopy demonstrated significantly higher S. mutans retention on teeth and tongues of co-infected mice compared to mice infected only with S. mutans. Collectively, the findings from this study strongly indicate that the secretion of polysacharides from C. albicans in the oral environment may impact the development of S. mutans biofilms, ultimately increasing dental caries and, therefore, Candida oral colonization should be considered as a factor in evaluating the risk of caries.

14.
J Fungi (Basel) ; 6(1)2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963180

RESUMO

Oral candidiasis, commonly referred to as "thrush," is an opportunistic fungal infection that commonly affects the oral mucosa. The main causative agent, Candida albicans, is a highly versatile commensal organism that is well adapted to its human host; however, changes in the host microenvironment can promote the transition from one of commensalism to pathogen. This transition is heavily reliant on an impressive repertoire of virulence factors, most notably cell surface adhesins, proteolytic enzymes, morphologic switching, and the development of drug resistance. In the oral cavity, the co-adhesion of C. albicans with bacteria is crucial for its persistence, and a wide range of synergistic interactions with various oral species were described to enhance colonization in the host. As a frequent colonizer of the oral mucosa, the host immune response in the oral cavity is oriented toward a more tolerogenic state and, therefore, local innate immune defenses play a central role in maintaining Candida in its commensal state. Specifically, in addition to preventing Candida adherence to epithelial cells, saliva is enriched with anti-candidal peptides, considered to be part of the host innate immunity. The T helper 17 (Th17)-type adaptive immune response is mainly involved in mucosal host defenses, controlling initial growth of Candida and inhibiting subsequent tissue invasion. Animal models, most notably the mouse model of oropharyngeal candidiasis and the rat model of denture stomatitis, are instrumental in our understanding of Candida virulence factors and the factors leading to host susceptibility to infections. Given the continuing rise in development of resistance to the limited number of traditional antifungal agents, novel therapeutic strategies are directed toward identifying bioactive compounds that target pathogenic mechanisms to prevent C. albicans transition from harmless commensal to pathogen.

15.
mBio ; 10(3)2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31213561

RESUMO

Fungal and bacterial populations coexist in the oral cavity, frequently forming mixed-species biofilms that complicate treatment against polymicrobial infections. However, despite relevance to oral health, the bidirectional interactions between these microbial populations are poorly understood. In this study, we aimed to elucidate the mechanisms underlying the interactions between the fungal species Candida albicans and the bacterial species Streptococcus gordonii as they coexist in mixed-species biofilms. Specifically, the interactions of different C. albicans mutant strains deficient in filamentation (efg1Δ/Δ and brg1Δ/Δ), adhesive interactions (als3Δ/Δ and bcr1Δ/Δ), and production of matrix exopolymeric substances (EPS) (kre5Δ/Δ, mnn9Δ/Δ, rlm1Δ/Δ, and zap1Δ/Δ) were evaluated with S. gordonii under different conditions mimicking the environment in the oral cavity. Interestingly, our results revealed that growth of the biofilm-deficient C. albicansals3Δ/Δ and bcr1Δ/Δ mutant strains in synthetic saliva or with S. gordonii restored their biofilm-forming ability. Moreover, challenging previous observations indicating an important role of morphogenetic conversions in the interactions between these two species, our results indicated a highly synergistic interaction between S. gordonii and the C. albicans filamentation-deficient efg1Δ/Δ and brg1Δ/Δ deletion mutants, which was particularly noticeable when the mixed biofilms were grown in synthetic saliva. Importantly, dual-species biofilms were found to exhibit increase in antimicrobial resistance, indicating that components of the fungal exopolymeric material confer protection to streptococcal cells against antibacterial treatment. Collectively, these findings unravel a high degree of complexity in the interactions between C. albicans and S. gordonii in mixed-species biofilms, which may impact homeostasis in the oral cavity.IMPORTANCE Microbial communities have a great impact in health and disease. C. albicans interacts with multiple microorganisms in the oral cavity, frequently forming polymicrobial biofilms. We report on the synergistic interactions between C. albicans and the Gram-positive bacterium S. gordonii, for which we have examined the different contributions of adhesive interactions, filamentation, and the extracellular matrix to the formation of dual-species biofilms. Our results demonstrate that growth in the presence of the bacterium can restore the biofilm-forming ability of different C. albicans mutant strains with defects in adhesion and filamentation. The mixed-species biofilms also show high levels of resistance to antibacterial and antifungal antibiotics, and our results indicate that the fungal biofilm matrix protects bacterial cells within these mixed-species biofilms. Our observations add to a growing body of evidence indicating a high level of complexity in the reciprocal interactions and consortial behavior of fungal/bacterial biofilms.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida albicans/fisiologia , Matriz Extracelular/metabolismo , Interações Microbianas , Streptococcus gordonii/fisiologia , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/genética , Adesão Celular , Matriz Extracelular/genética , Proteínas Fúngicas , Humanos , Hifas/fisiologia , Boca/microbiologia , Saliva/microbiologia
16.
Curr Opin Microbiol ; 52: 1-6, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31085405

RESUMO

The fungal species Candida albicans is most frequently associated with biofilm formation in immune-compromised and medically compromised patients, and it is now firmly established that biofilm formation represents a major virulence factor during candidiasis. A growing body of evidence has demonstrated that C. albicans biofilm development is a highly regulated and coordinated process, where adhesive interactions, morphogenetic conversions, and consortial behavior play significant roles. Cells within the biofilms are protected from environmental stresses including host immune defenses and antifungal treatment, which carries important clinical consequences for the treatment of biofilm-associated infections. Dispersal of cells from biofilms represents one of the hallmarks of the biofilm life-style, and in the case of C. albicans dispersed cells are responsible for candidemia and dissemination leading to the establishment of invasive disease.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida albicans/crescimento & desenvolvimento , Candida albicans/patogenicidade , Candidíase/microbiologia , Candidíase/fisiopatologia , Animais , Humanos , Virulência
17.
J Fungi (Basel) ; 4(4)2018 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-30400279

RESUMO

The human oral cavity is normally colonized by a wide range of microorganisms, including bacteria, fungi, Archaea, viruses, and protozoa. Within the different oral microenvironments these organisms are often found as part of highly organized microbial communities termed biofilms, which display consortial behavior. Formation and maintenance of these biofilms are highly dependent on the direct interactions between the different members of the microbiota, as well as on the released factors that influence the surrounding microbial populations. These complex biofilm dynamics influence oral health and disease. In the latest years there has been an increased recognition of the important role that interkingdom interactions, in particular those between fungi and bacteria, play within the oral cavity. Candida spp., and in particular C. albicans, are among the most important fungi colonizing the oral cavity of humans and have been found to participate in these complex microbial oral biofilms. C. albicans has been reported to interact with individual members of the oral bacterial microbiota, leading to either synergistic or antagonistic relationships. In this review we describe some of the better characterized interactions between Candida spp. and oral bacteria.

18.
Front Microbiol ; 9: 2541, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30410476

RESUMO

Biofilm-associated Pseudomonas aeruginosa infections remain a significant clinical challenge since the conventional antibiotic treatment or combination therapies are largely ineffective; and new approaches are needed. To circumvent the major challenges associated with discovery of new antimicrobials, we have screened a library of compounds that are commercially available and approved by the FDA (Prestwick Chemical Library) against P. aeruginosa for effective antimicrobial and anti-biofilm activity. A preliminary screen of the Prestwick Chemical Library alone did not yield any repositionable candidates, but in a screen of combinations with a fixed sub-inhibitory concentration of the antibiotic colistin we observed 10 drugs whose bacterial inhibiting activity was reproducibly enhanced, seven of which were enhanced by more than 50%. We performed checkerboard assays of these seven drugs in combination with colistin against planktonic cells, and analysis of their interactions over the complete combination matrix using the Zero Interaction Potency (ZIP) model revealed interactions that varied from highly synergistic to completely antagonistic. Of these, five combinations that showed synergism were down-selected and tested against preformed biofilms of P. aeruginosa. Two of the five combinations were active against preformed biofilms of both laboratory and clinical strain of P. aeruginosa, resulting in a 2-log reduction in culturable cells. In summary, we have identified synergistic combinations of five commercially available, FDA-approved drugs and colistin that show antimicrobial activity against planktonic P. aeruginosa (Clomiphene Citrate, Mitoxantrone Dihydrochloride, Methyl Benzethonium Chloride, Benzethonium Chloride, and Auranofin) as well as two combinations (Auranofin and Clomiphene Citrate) with colistin that show antibiofilm activity.

19.
J Fungi (Basel) ; 4(2)2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29866990

RESUMO

The oral cavity serves as a nutrient-rich haven for over 600 species of microorganisms. Although many are essential to maintaining the oral microbiota, some can cause oral infections such as caries, periodontitis, mucositis, and endodontic infections, and this is further exacerbated with dental implants. Most of these infections are mixed species in nature and associated with a biofilm mode of growth. Here, after optimization of different parameters including cell density, growth media, and incubation conditions, we have developed an in vitro model of C. albicans⁻S. gordonii mixed-species biofilms on titanium discs that is relevant to infections of peri-implant diseases. Our results indicate a synergistic effect for the development of biofilms when both microorganisms were seeded together, confirming the existence of beneficial, mutualistic cross-kingdom interactions for biofilm formation. The morphological and architectural features of these dual-species biofilms formed on titanium were determined using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Mixed biofilms formed on titanium discs showed a high level of resistance to combination therapy with antifungal and antibacterial drugs. This model can serve as a platform for further analyses of complex fungal/bacterial biofilms and can also be applied to screening of new drug candidates against mixed-species biofilms.

20.
J Fungi (Basel) ; 3(1)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28516088

RESUMO

A majority of infections caused by Candida albicans-the most frequent fungal pathogen-are associated with biofilm formation. A salient feature of C. albicans biofilms is the presence of the biofilm matrix. This matrix is composed of exopolymeric materials secreted by sessile cells within the biofilm, in which all classes of macromolecules are represented, and provides protection against environmental challenges. In this review, we summarize the knowledge accumulated during the last two decades on the composition, structure, and function of the C. albicans biofilm matrix. Knowledge of the matrix components, its structure, and function will help pave the way to novel strategies to combat C. albicans biofilm infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA