Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 14(12): 813, 2023 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071330

RESUMO

Micromass cultures of embryonic limb skeletal progenitors replicate the tissue remodelling processes observed during digit morphogenesis. Here, we have employed micromass cultures in an in vitro assay to study the nature of cell degeneration events associated with skeletogenesis. In the assay, "naive" progenitors obtained from the autopod aggregate to form chondrogenic nodules and those occupying the internodular spaces exhibit intense apoptosis and progressive accumulation of larger cells, showing intense SA-ß-Gal histochemical labelling that strictly overlaps with the distribution of neutral red vital staining. qPCR analysis detected intense upregulation of the p21 gene, but P21 immunolabelling showed cytoplasmic rather than the nuclear distribution expected in senescent cells. Semithin sections and transmission electron microscopy confirmed the presence of canonical apoptotic cells, degenerated cell fragments in the process of phagocytic internalization by the neighbouring cells, and large vacuolated cells containing phagosomes. The immunohistochemical distribution of active caspase 3, cathepsin D, and ß-galactosidase together with the reduction in cell death by chemical inhibition of caspases (Q-VAD) and lysosomal cathepsin D (Pepstatin A) supported a redundant implication of both pathways in the dying process. Chemical inhibition of P21 (UC2288) revealed a complementary role of this factor in the dying process. In contrast, treatment with the senolytic drug Navitoclax increased cell death without changing the number of cells positive for SA-ß-Gal. We propose that this model of tissue remodelling involves the cooperative activation of multiple degradation routes and, most importantly, that positivity for SA-ß-Gal reflects the occurrence of phagocytosis, supporting the rejection of cell senescence as a defining component of developmental tissue remodelling.


Assuntos
Caspases , Catepsina D , Caspases/metabolismo , Catepsina D/metabolismo , Apoptose/fisiologia , Senescência Celular/fisiologia , Lisossomos/metabolismo
2.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163078

RESUMO

The present paper proposes a new level of regulation of programmed cell death (PCD) in developing systems based on epigenetics. We argue against the traditional view of PCD as an altruistic "cell suicide" activated by specific gene-encoded signals with the function of favoring the development of their neighboring progenitors to properly form embryonic organs. In contrast, we propose that signals and local tissue interactions responsible for growth and differentiation of the embryonic tissues generate domains where cells retain an epigenetic profile sensitive to DNA damage that results in its subsequent elimination in a fashion reminiscent of what happens with scaffolding at the end of the construction of a building. Canonical death genes, including Bcl-2 family members, caspases, and lysosomal proteases, would reflect the downstream molecular machinery that executes the dying process rather than being master cell death regulatory signals.


Assuntos
Caspases/metabolismo , Morte Celular , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Genes bcl-2 , Peptídeo Hidrolases/metabolismo , Animais , Caspases/genética , Diferenciação Celular , Lisossomos/enzimologia , Peptídeo Hidrolases/genética
3.
Dev Dyn ; 251(1): 125-136, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33871876

RESUMO

Transforming growth factor beta (TGFß) constitutes a large and evolutionarily conserved superfamily of secreted factors that play essential roles in embryonic development, cancer, tissue regeneration, and human degenerative pathology. Studies of this signaling cascade in the regulation of cellular and tissue changes in the three-dimensional context of a developing embryo have notably advanced in the understanding of the action mechanism of these growth factors. In this review, we address the role of TGFß signaling in the developing limb, focusing on its essential function in the morphogenesis of the autopod. As we discuss in this work, modern mouse genetic experiments together with more classical embryological approaches in chick embryos, provided very valuable information concerning the role of TGFß and Activin family members in the morphogenesis of the digits of tetrapods, including the formation of phalanxes, digital tendons, and interphalangeal joints. We emphasize the importance of the Activin and TGFß proteins as digit inducing factors and their critical interaction with the BMP signaling to sculpt the hand and foot morphology.


Assuntos
Proteínas Morfogenéticas Ósseas , Fator de Crescimento Transformador beta , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Embrião de Galinha , Extremidades , Camundongos , Morfogênese , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
4.
Cells ; 12(1)2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36611968

RESUMO

Considering the importance of programmed cell death in the formation of the skeleton during embryonic development, the aim of the present study was to analyze whether regulated cell degeneration also accompanies the differentiation of embryonic limb skeletal progenitors in high-density tridimensional cultures (micromass cultures). Our results show that the formation of primary cartilage nodules in the micromass culture assay involves a patterned process of cell death and cell senescence, complementary to the pattern of chondrogenesis. As occurs in vivo, the degenerative events were preceded by DNA damage detectable by γH2AX immunolabeling and proceeded via apoptosis and cell senescence. Combined treatments of the cultures with growth factors active during limb skeletogenesis, including FGF, BMP, and WNT revealed that FGF signaling modulates the response of progenitors to signaling pathways implicated in cell death. Transcriptional changes induced by FGF treatments suggested that this function is mediated by the positive regulation of the genetic machinery responsible for apoptosis and cell senescence together with hypomethylation of the Sox9 gene promoter. We propose that FGF signaling exerts a primordial function in the embryonic limb conferring chondroprogenitors with their biological properties.


Assuntos
Cartilagem , Senescência Celular , Apoptose , Cartilagem/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Fatores de Crescimento de Fibroblastos/metabolismo
5.
Cells ; 10(4)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33921015

RESUMO

During limb formation in vertebrates with free digits, the interdigital mesoderm is eliminated by a massive degeneration process that involves apoptosis and cell senescence. The degradation process is preceded by intense DNA damage in zones located close to methylated DNA, accompanied by the activation of the DNA repair response. In this study, we show that trimethylated histone 3 (H3K4me3, H3K9me3, and H3K27me3) overlaps with zones positive for 5mC in the nuclei of interdigital cells. This pattern contrasts with the widespread distribution of acetylated histones (H3K9ac and H4ac) and the histone variant H3.3 throughout the nucleoplasm. Consistent with the intense labeling of acetylated histones, the histone deacetylase genes Hdac1, Hdac2, Hdac3, and Hdac8, and at a more reduced level, Hdac10, are expressed in the interdigits. Furthermore, local treatments with the histone deacetylase inhibitor trichostatin A, which promotes an open chromatin state, induces massive cell death and transcriptional changes reminiscent of, but preceding, the physiological process of interdigit remodeling. Together, these findings suggest that the epigenetic profile of the interdigital mesoderm contributes to the sensitivity to DNA damage that precedes apoptosis during tissue regression.


Assuntos
Epigênese Genética , Extremidades/embriologia , Histonas/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Embrião de Galinha , Dano ao DNA/genética , Epigênese Genética/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Histona Desacetilases/metabolismo , Histonas/genética , Ácidos Hidroxâmicos/farmacologia , Microcirurgia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
6.
Dev Dyn ; 250(9): 1236-1247, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32798262

RESUMO

Our aim is to critically review current knowledge of the function and regulation of cell death in the developing limb. We provide a detailed, but short, overview of the areas of cell death observed in the developing limb, establishing their function in morphogenesis and structural development of limb tissues. We will examine the functions of this process in the formation and growth of the limb primordia, formation of cartilaginous skeleton, formation of synovial joints, and establishment of muscle bellies, tendons, and entheses. We will analyze the plasticity of the cell death program by focusing on the developmental potential of progenitors prior to death. Considering the prolonged plasticity of progenitors to escape from the death process, we will discuss a new biological perspective that explains cell death: this process, rather than secondary to a specific genetic program, is a consequence of the tissue building strategy employed by the embryo based on the formation of scaffolds that disintegrate once their associated neighboring structures differentiate.


Assuntos
Extremidades , Vertebrados , Animais , Morte Celular , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese
7.
Cancers (Basel) ; 12(12)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255665

RESUMO

STAT3 and STAT5B (STAT3/STAT5B) mutations are the most common mutations in T-cell large granular lymphocytic leukemia (T-LGLL) and chronic lymphoproliferative disorders of NK cells (CLPD-NK), but their clinical impact remains unknown. We investigated the frequency and type of STAT3/STAT5B mutations in FACS-sorted populations of expanded T/NK-LGL from 100 (82 clonal; 6 oligoclonal; 12 polyclonal) patients, and its relationship with disease features. Seventeen non-LGL T-CLPD patients and 628 age-matched healthy donors were analyzed as controls. STAT3 (n = 30) and STAT5B (n = 1) mutations were detected in 28/82 clonal T/NK-LGLL patients (34%), while absent (0/18, 0%) among oligoclonal/polyclonal LGL-lymphocytosis. Mutations were found across all diagnostic subgroups: TCD8+-LGLL, 36%; CLPD-NK, 38%; TCD4+-LGLL, 7%; Tαß+DP-LGLL, 100%; Tαß+DN-LGLL, 50%; Tγδ+-LGLL, 44%. STAT3-mutated T-LGLL/CLPD-NK showed overall reduced (p < 0.05) blood counts of most normal leukocyte subsets, with a higher rate (vs. nonmutated LGLL) of neutropenia (p = 0.04), severe neutropenia (p = 0.02), and cases requiring treatment (p = 0.0001), together with a shorter time-to-therapy (p = 0.0001), particularly in non-Y640F STAT3-mutated patients. These findings confirm and extend on previous observations about the high prevalence of STAT3 mutations across different subtypes of LGLL, and its association with a more marked decrease of all major blood-cell subsets and a shortened time-to-therapy.

8.
Front Cell Dev Biol ; 8: 593761, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195267

RESUMO

Digits develop in the distal part of the embryonic limb primordium as radial prechondrogenic condensations separated by undifferentiated mesoderm. In a short time interval the interdigital mesoderm undergoes massive degeneration to determine the formation of free digits. This fascinating process has often been considered as an altruistic cell suicide that is evolutionarily-regulated in species with different degrees of digit webbing. Initial descriptions of interdigit remodeling considered lysosomes as the primary cause of the degenerative process. However, the functional significance of lysosomes lost interest among researcher and was displaced to a secondary role because the introduction of the term apoptosis. Accumulating evidence in recent decades has revealed that, far from being a unique method of embryonic cell death, apoptosis is only one among several redundant dying mechanisms accounting for the elimination of tissues during embryonic development. Developmental cell senescence has emerged in the last decade as a primary factor implicated in interdigit remodeling. Our review proposes that cell senescence is the biological process identified by vital staining in embryonic models and implicates lysosomes in programmed cell death. We review major structural changes associated with interdigit remodeling that may be driven by cell senescence. Furthermore, the identification of cell senescence lacking tissue degeneration, associated with the maturation of the digit tendons at the same stages of interdigital remodeling, allowed us to distinguish between two functionally distinct types of embryonic cell senescence, "constructive" and "destructive."

9.
Cell Death Dis ; 10(5): 347, 2019 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-31024001

RESUMO

The primordium of the limb contains a number of progenitors far superior to those necessary to form the skeletal components of this appendage. During the course of development, precursors that do not follow the skeletogenic program are removed by cell senescence and apoptosis. The formation of the digits provides the most representative example of embryonic remodeling via cell degeneration. In the hand/foot regions of the embryonic vertebrate limb (autopod), the interdigital tissue and the zones of interphalangeal joint formation undergo massive degeneration that accounts for jointed and free digit morphology. Developmental senescence and caspase-dependent apoptosis are considered responsible for these remodeling processes. Our study uncovers a new upstream level of regulation of remodeling by the epigenetic regulators Uhrf1 and Uhrf2 genes. These genes are spatially and temporally expressed in the pre-apoptotic regions. UHRF1 and UHRF2 showed a nuclear localization associated with foci of methylated cytosine. Interestingly, nuclear labeling increased in cells progressing through the stages of degeneration prior to TUNEL positivity. Functional analysis in cultured limb skeletal progenitors via the overexpression of either UHRF1 or UHRF2 inhibited chondrogenesis and induced cell senescence and apoptosis accompanied with changes in global and regional DNA methylation. Uhrfs modulated canonical cell differentiation factors, such as Sox9 and Scleraxis, promoted apoptosis via up-regulation of Bak1, and induced cell senescence, by arresting progenitors at the S phase and upregulating the expression of p21. Expression of Uhrf genes in vivo was positively modulated by FGF signaling. In the micromass culture assay Uhrf1 was down-regulated as the progenitors lost stemness and differentiated into cartilage. Together, our findings emphasize the importance of tuning the balance between cell differentiation and cell stemness as a central step in the initiation of the so-called "embryonic programmed cell death" and suggest that the structural organization of the chromatin, via epigenetic modifications, may be a precocious and critical factor in these regulatory events.


Assuntos
Diferenciação Celular , Condrogênese , Extremidades/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Apoptose , Cartilagem/citologia , Cartilagem/metabolismo , Senescência Celular , Embrião de Galinha , Metilação de DNA , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/metabolismo , Camundongos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular , Transdução de Sinais , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo
10.
J Anat ; 234(6): 815-829, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30875434

RESUMO

During embryonic development, organ morphogenesis requires major tissue rearrangements that are tightly regulated at the genetic level. A large number of studies performed in recent decades assigned a central role to programmed cell death for such morphogenetic tissue rearrangements that often sculpt the shape of embryonic organs. However, accumulating evidence indicates that far from being the only factor responsible for sculpting organ morphology, programmed cell death is accompanied by other tissue remodeling events that ensure the outcome of morphogenesis. In this regard, cell senescence has been recently associated with morphogenetic degenerative embryonic processes as an early tissue remodeling event in development of the limbs, kidney and inner ear. Here, we have explored cell senescence by monitoring ß-galactosidase activity during embryonic heart development where programmed cell death is believed to exert an important morphogenetic function. We report the occurrence of extensive cell senescence foci during heart morphogenesis. These foci overlap spatially and temporally with the areas of programmed cell death that are associated with remodeling of the outflow tract to build the roots of the great arteries and with the septation of cardiac cavities. qPCR analysis allowed us to identify a gene expression profile characteristic of the so-called senescence secretory associated phenotype in the remodeling outflow tract of the embryonic heart. In addition, we confirmed local upregulation of numerous tumor suppressor genes including p21, p53, p63, p73 and Btg2. Interestingly, the areas of cell senescence were also accompanied by intense lysosomal activation and non-apoptotic DNA damage revealed by γH2AX immunolabeling. Considering the importance of sustained DNA damage as a triggering factor for cell senescence and apoptosis, we propose the coordinated contribution of DNA damage, senescence and apoptotic cell death to assure tissue remodeling in the developing vertebrate heart.


Assuntos
Apoptose/fisiologia , Senescência Celular/fisiologia , Dano ao DNA/fisiologia , Coração/embriologia , Organogênese/fisiologia , Animais , Embrião de Galinha
11.
J Anat ; 231(2): 275-286, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28543398

RESUMO

Next-generation sequencing in combination with quantitative polymerase chain reaction analysis revealed a dynamic miRNA signature in the interdigital mesoderm of the chick embryonic hinlimb in the course of interdigit remodelling. During this period, 612 previously known chicken miRNAs (gga-miRNAs) and 401 non-identified sequences were expressed in the interdigital mesoderm. Thirty-six microRNAs, represented by more than 750 reads per million, displayed differential expression between stages HH29 (6 id) and HH32 (7.5 id), which correspond to the onset and the peak of interdigital cell death. Twenty miRNAs were upregulated by at least 1.5-fold, and sixteen were downregulated by at least 0.5-fold. Upregulated miRNAs included miRNAs with recognized proapoptotic functions in other systems (miR-181 family, miR-451 and miR-148a), miRNAs associated with inflammation and cell senescence (miR-21 and miR-146) and miRNAs able to induce changes in the extracellular matrix (miR-30c). In contrast, miRNAs with known antiapoptotic effects in other systems, such as miR-222 and miR-205, became downregulated. In addition, miR-92, an important positive regulator of cell proliferation, was also downregulated. Together, these findings indicate a role for miRNAs in the control of tissue regression and cell death in a characteristic morphogenetic embryonic process based on massive apoptosis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Membro Posterior/embriologia , MicroRNAs , Animais , Apoptose/genética , Embrião de Galinha , Patos , Dedos do Pé/embriologia
12.
Front Cell Dev Biol ; 5: 23, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28386540

RESUMO

In tetrapods the digit pattern has evolved to adapt to distinct locomotive strategies. The number of digits varies between species or even between hindlimb and forelimb within the same species. These facts illustrate the plasticity of embryonic limb autopods. Sox9 is a precocious marker of skeletal differentiation of limb mesenchymal cells. Its pattern of expression in the developing limb has been widely studied and reflects the activity of signaling cascades responsible for skeletogenesis. In this assay we stress previously overlooked differences in the pattern of expression of Sox9 in limbs of avian, mouse and turtle embryos which may reflect signaling differences associated with distinct limb skeletal morphologies observed in these species. Furthermore, we show that Sox9 gene expression is higher and maintained in the interdigital region in species with webbed digits in comparison with free digit animals.

13.
Blood Adv ; 1(12): 728-732, 2017 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29296716

RESUMO

In patients with multiple myeloma, obtaining posttreatment minimal residual disease (MRD) negativity is associated with longer progression-free survival and overall survival. Here, we compared the diagnostic performance of a single 10-color tube with that of a EuroFlow 8-color 2-tube panel for MRD testing. Bone marrow samples from 41 multiple myeloma patients were tested in parallel using the 2 approaches. Compared with the sum of the cells from the EuroFlow two 8-color tubes, the Memorial Sloan Kettering Cancer Center (MSKCC) single 10-color tube had a slight reduction in total cell number with a mean ratio of 0.85 (range, 0.57-1.46; P < .05), likely attributable to permeabilization of the cells. Percent of plasma cells showed a high degree of concordance (r2 = 0.97) as did normal plasma cells (r2 = 0.96), consistent with no selective plasma cell loss. Importantly, concordant measurement of residual disease burden was seen with abnormal plasma cells (r2 = 0.97). The overall concordance between the 2 tests was 98%. In 1 case, there was a discrepancy near the limit of detection of both tests in favor of the slightly greater theoretical sensitivity of the EuroFlow 8-color 2-tube panel (analytical sensitivity limit of MSKCC single 10-color tube: 6 cells in 1 million with at least 3 million cell acquisitions; EuroFlow 8-color 2-tube panel: 2 cells in 1 million with the recommended 10 million cell acquisitions).

14.
Sci Rep ; 6: 35478, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27752097

RESUMO

DNA damage independent of caspase activation accompanies programmed cell death in different vertebrate embryonic organs. We analyzed the significance of DNA damage during the regression of the interdigital tissue, which sculpts the digits in the embryonic limb. Interdigit remodeling involves oxidative stress, massive apoptosis and cell senescence. Phosphorylation of H2AX mediated by ATM precedes caspase dependent apoptosis and cell senescence during interdigit regression. The association of γH2AX with other downstream DNA repair factors, including MDC1, Rad50 and 53BP1 suggests a defensive response of cells against DNA damage. The relative distribution of cells γH2AX-only positive, TUNEL-only positive, and cells double positive for both markers is consistent with a sequence of degenerative events starting by damage of the DNA. In support of this interpretation, the relative number of γH2AX-only cells increases after caspase inhibition while the relative number of TUNEL-only cells increases after inhibition of ATM. Furthermore, cultured interdigits survived and maintained intense chondrogenic potential, even at advanced stages of degeneration, discarding a previous commitment to die. Our findings support a new biological paradigm considering embryonic cell death secondary to genotoxic stimuli, challenging the idea that considers physiological cell death a cell suicide regulated by an internal death clock that pre-programmes degeneration.


Assuntos
Apoptose , Dano ao DNA , Desenvolvimento Embrionário/genética , Animais , Caspases/metabolismo , Morte Celular , Senescência Celular/genética , Embrião de Galinha , Condrogênese/genética , Reparo do DNA , Imunofluorescência , Histonas/metabolismo , Imuno-Histoquímica , Camundongos , Estresse Oxidativo , Vertebrados
15.
Cell Tissue Res ; 364(2): 299-308, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26662056

RESUMO

In the developing limb, differentiation of skeletal progenitors towards distinct connective tissues of the digits is correlated with the establishment of well-defined domains of Btg1 gene expression. Zones of high expression of Btg1 include the earliest digit blastemas, the condensing mesoderm at the tip of the growing digits, the peritendinous mesenchyme, and the chondrocytes around the developing interphalangeal joints. Gain- and loss-of function experiments in micromass cultures of skeletal progenitors reveal a negative influence of Btg1 in cartilage differentiation accompanied by up-regulation of Ccn1, Scleraxis and PTHrP. Previous studies have assigned a role to these factors in the aggregation of progenitors in the digit tips (Ccn1), in the differentiation of tendon blastemas (Scleraxis) and repressing hypertrophic cartilage differentiation (PTHrP). Overexpression of Btg1 up-regulates the expression of retinoic acid and thyroid hormone receptors, but, different from other systems, the influence of BTG1 in connective tissue differentiation appears to be independent of retinoic acid and thyroid hormone signaling.


Assuntos
Cartilagem/citologia , Condrogênese/fisiologia , Extremidades/embriologia , Mesoderma/metabolismo , Proteínas de Neoplasias/metabolismo , Dedos do Pé/embriologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Embrião de Galinha , Condrócitos/citologia , Condrócitos/metabolismo , Proteína Rica em Cisteína 61/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Neoplasias/biossíntese , Proteína Relacionada ao Hormônio Paratireóideo/biossíntese , Receptores dos Hormônios Tireóideos/biossíntese , Transdução de Sinais/fisiologia , Tretinoína/metabolismo
16.
Aging (Albany NY) ; 7(11): 974-85, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26568417

RESUMO

This study re-examined the dying process in the interdigital tissue during the formation of free digits in the developing limbs. We demonstrated that the interdigital dying process was associated with cell senescence, as deduced by induction of ß-gal activity, mitotic arrest, and transcriptional up-regulation of p21 together with many components of the senescence-associated secretory phenotype. We also found overlapping domains of expression of members of the Btg/Tob gene family of antiproliferative factors in the regressing interdigits. Notably, Btg2 was up-regulated during interdigit remodeling in species with free digits but not in the webbed foot of the duck. We also demonstrate that oxidative stress promoted the expression of Btg2, and that FGF2 and IGF1 which are survival signals for embryonic limb mesenchyme inhibited Btg2 expression. Btg2 overexpression in vivo and in vitro induced all the observed changes during interdigit regression, including oxidative stress, arrest of cell cycle progression, transcriptional regulation of senescence markers, and caspase-mediated apoptosis. Consistent with the central role of p21 on cell senescence, the transcriptional effects induced by overexpression of Btg2 are attenuated by silencing p21. Our findings indicate that cell senescence and apoptosis are complementary processes in the regression of embryonic tissues and share common regulatory signals.


Assuntos
Apoptose , Senescência Celular , Extremidades/embriologia , Animais , Embrião de Galinha , Humanos , Proteínas Imediatamente Precoces/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mesoderma/citologia , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/fisiologia
17.
Int J Dev Biol ; 59(1-3): 55-62, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26374526

RESUMO

Here we have chosen the regression of the interdigital tissue which sculpts the digits from the hand/foot plate in tetrapod embryos to review the most relevant aspects concerning the regulation and biological significance of programmed cell death. We gather abundant information showing that the initiation of the degenerative process is the result of a complex interplay between the different signaling pathways which are also responsible for limb outgrowth and skeletal tissue differentiation, rather than being regulated by a specific signaling pathway. The model further shows that once the death response is triggered, several different routes of cell disruption, including caspase-dependent apoptosis, lysosomal-mediated cell death, and even a cell senescence process, are activated in the interdigits to ensure their elimination. Transcriptional and structural changes accompanying the degenerative process, and their posible contribution to the control of the death process, are also revised in detail. Finally we survey a number of issues still awaiting clarification, such as the functional implication of interdigital cell death as a source of signals acting on the surrounding tissues, as occurs in the so called "regenerative cell death".


Assuntos
Apoptose/fisiologia , Extremidades/embriologia , Organogênese/fisiologia , Vertebrados/embriologia , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células , Botões de Extremidades/embriologia , Transdução de Sinais/fisiologia
18.
Gene Expr Patterns ; 15(1): 52-60, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24769017

RESUMO

Tendons and cartilages are connective tissues of essential importance in the musculoskeletal system. During digit development, cartilage and tendon primordia develop from the undifferentiated mesenchymal cells originated in the lateral plate mesoderm. The specification of these tissues begins with the establishment of cellular aggregates, which prefigure the tendons and phalanges. Transforming growth factor beta proteins (TGFßs) are the inductive signals responsible not only for the initiation of chondrogenesis and tenogenesis during digit formation, but also for joint specification. An early role of this family of secreted proteins during these processes is to promote mesenchymal cell precursors condensation. Here we show that Decorin presents an overlapping pattern of expression with TGFß2 in joint and tendon blastemas of the embryonic digits. Furthermore, Decorin expression is induced by TGFß signaling, and DECORIN promotes aggregation of digit mesenchymal cell precursors. In addition, we provide gene expression studies suggesting that Cadherin-11 may function as an effector of Decorin in this experimental model.


Assuntos
Proteínas Aviárias/genética , Caderinas/metabolismo , Decorina/genética , Botões de Extremidades/embriologia , Fator de Crescimento Transformador beta2/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Embrião de Galinha , Decorina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Articulações/embriologia , Transdução de Sinais , Tendões/embriologia
19.
J Cell Physiol ; 229(10): 1397-404, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24519818

RESUMO

Reelin is a bioactive component of some extracellular matrices. Most studies on this signaling glycoprotein have been performed in the developing nervous system, where Reelin binds to the very-low-density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2) of target cells. This induces phosphorylation of the intracellular adaptor protein Disabled-1 (Dab-1), which subsequently activates downstream effectors to regulate important aspects of neuroblast biology. Here, we show that the components of the Reelin signaling pathway exhibit a dynamic expression pattern during the development of the digits in chick and mouse embryonic limbs. Reelin and Dab-1 are highly expressed in the differentiating digit cartilages and tendinous blastemas. Immunolabeling of phospho-Dab-1 indicates that the pattern of gene expression correlates with zones of active signaling. Intense signaling is also present in the early stages of cartilage differentiation in micromass cultures of digit mesodermal progenitors. In this in vitro assay, disruption of the Reelin signaling pathway by gene silencing causes cystoskeletal and cell shape modifications accompanied by reduced chondrogenesis and down-regulation of specific cartilage molecular markers. Of note, Scleraxis and Six2, which are master genes of tendinous blastemas, become up-regulated in these experiments. We further show that the receptors ApoER2 and VLDLR are differentially expressed in cartilage and tendons and that these receptors show temporal expression differences in the micromass cultures. Sox9 and other chondrogenic markers were downregulated in micromass cultures after ApoER2 gene silencing, while gene silencing of VLDLR up-regulates Scleraxis. In summary, our findings provide evidence of a role for Reelin signaling in skeletogenesis that promotes chondrogenesis through ApoER2 and inhibits tenogenic differentiation through VLDLR.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Condrócitos/metabolismo , Condrogênese , Proteínas da Matriz Extracelular/metabolismo , Botões de Extremidades/metabolismo , Mesoderma/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Serina Endopeptidases/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Forma Celular , Células Cultivadas , Embrião de Galinha , Citoesqueleto/metabolismo , Proteínas da Matriz Extracelular/genética , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Botões de Extremidades/citologia , Mesoderma/citologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Interferência de RNA , Receptores de LDL/genética , Receptores de LDL/metabolismo , Proteína Reelina , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Serina Endopeptidases/genética , Tendões/embriologia , Tendões/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção
20.
ACS Chem Biol ; 9(1): 72-9, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24228739

RESUMO

Repairing damaged cartilage and tendons is a major challenge of regenerative medicine. There has been great progress in the past decade toward obtaining stem cells for regenerative purposes from a variety of sources. However, the development of procedures to direct and maintain the differentiation of progenitors into cartilage or tendon is still a hurdle to overcome in regenerative medicine of the musculoskeletal system. This is because connective tissues often lack stable phenotypes and retain plasticity to return to the initial stages of differentiation or to transdifferentiate into another connective tissue cell lineage. This makes it necessary to unravel the molecular basis that is responsible for the differentiation of connective tissue cell lineages. In this review, we summarize the investigations performed in the past two decades to unravel the signals that regulate the differentiation of skeletal cell progenitors into cartilage and tendons during embryonic limb development. The data obtained in those studies demonstrate that Tgfß, BMP, FGF, and Wnt establish a complex signaling network that directs the differentiation of skeletal cell progenitors. Remarkably, in the embryonic digit model, the divergent differentiation of progenitors depends on the temporal coordination of those signals, rather than being specified by an individual signaling pathway. Due to its potential medical relevance, we highlight the importance of the coordinate influence of the Tgfß and BMP pathways in the differentiation of cell progenitors into tendon or cartilage.


Assuntos
Cartilagem/citologia , Cartilagem/embriologia , Células-Tronco/citologia , Tendões/citologia , Tendões/embriologia , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Cartilagem/metabolismo , Diferenciação Celular , Extremidades/embriologia , Humanos , Medicina Regenerativa , Transdução de Sinais , Células-Tronco/metabolismo , Tendões/metabolismo , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA