Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38202437

RESUMO

De novo regeneration of Cannabis sativa L. (cannabis) using tissue culture techniques remains unreliable and infrequent. Conventional methods for the regeneration and transformation of cannabis have not achieved the reliability and replicability that need to be integrated into research and breeding programs. Protoplast systems are effective for gene expression studies and transformation and genome-editing technologies and open the possibility of somatic hybridization to create interspecific hybrids. To date, leaf-derived protoplasts have been isolated for transient gene expression studies, but protoplast-to-plant regeneration has not been reported. The present study aims to evaluate the efficacy of using a callus culture system as an abundant tissue source for protoplast isolation and lays the groundwork for a protoplast-to-plant regeneration system. Using hypocotyl-derived callus cultures, which are known to have relatively greater regenerative potential, the efficacy of protoplast isolation and initial cell division were assessed. In this study, the effect of 2-aminoindane-2-phosphonic acid (AIP), a competitive inhibitor of phenylalanine ammonia lyase (PAL), in callus culture media and the effect of subculture frequency on protoplast yield were assessed. This study found that inclusion of AIP at 1 mM resulted in a 334% increase in protoplast yield compared with AIP-free medium, representing the first known use of AIP in cannabis tissue culture. Inclusion of AIP led to a 28% decrease in total soluble phenolics and 52% decrease in tissue browning compared with the control medium. Lastly, a two-phase culture system for protoplast regeneration was tested. At a concentration of 2.0 × 105 protoplasts per mL, cell wall reconstitution and cell division were observed, providing one of the first know reports of cell division from cannabis protoplasts and setting the stage for the future development of a protoplast-to-plant regeneration system.

2.
Plant Reprod ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218931

RESUMO

KEY MESSAGE: Presented here are model Yang cycle, ethylene biosynthesis and signaling pathways in Cannabis sativa. C. sativa floral transcriptomes were used to predict putative ethylene-related genes involved in sexual plasticity in the species. Sexual plasticity is a phenomenon, wherein organisms possess the ability to alter their phenotypic sex in response to environmental and physiological stimuli, without modifying their sex chromosomes. Cannabis sativa L., a medically valuable plant species, exhibits sexual plasticity when subjected to specific chemicals that influence ethylene biosynthesis and signaling. Nevertheless, the precise contribution of ethylene-related genes (ERGs) to sexual plasticity in cannabis remains unexplored. The current study employed Arabidopsis thaliana L. as a model organism to conduct gene orthology analysis and reconstruct the Yang Cycle, ethylene biosynthesis, and ethylene signaling pathways in C. sativa. Additionally, two transcriptomic datasets comprising male, female, and chemically induced male flowers were examined to identify expression patterns in ERGs associated with sexual determination and sexual plasticity. These ERGs involved in sexual plasticity were categorized into two distinct expression patterns: floral organ concordant (FOC) and unique (uERG). Furthermore, a third expression pattern, termed karyotype concordant (KC) expression, was proposed, which plays a role in sex determination. The study revealed that CsERGs associated with sexual plasticity are dispersed throughout the genome and are not limited to the sex chromosomes, indicating a widespread regulation of sexual plasticity in C. sativa.

3.
Genome ; 66(8): 202-211, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37163765

RESUMO

In the 18th century, Carolus Linnaeus created a formalized system of classification of living organisms based on their anatomic relationships, which we know as taxonomic nomenclature. Historically, the genus Cannabis has been described three ways under this system: Cannabis sativa by C. Linnaeus in 1753, Cannabis indica by J.B. Lamarck in 1785, and Cannabis ruderalis by D.E. Janischewsky in 1924, with these taxonomic classifications having been derived from physical, morphological, chemical, and geographical data. Today, this confusing taxonomy has led to an ongoing debate about whether the genus Cannabis consists of a single species or multiple distinct species or subspecies. Recently, genome sequencing and bioinformatics have provided greater resolution of taxonomic assignments at the species level. As a result, some previously discussed classification frameworks have been brought into question. The aim of this review is to provide a historical context for the confusion surrounding the taxonomy of the genus Cannabis and highlight recent research on genomics-based taxonomical approaches to clarify the question of Cannabis taxonomy. We suggest that the latest evidence shifts away from the previous multiple species framework and points towards the genus Cannabis consisting of a highly diverse monotypic species.

4.
PLoS One ; 16(8): e0235525, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34388148

RESUMO

Cannabis sativa is relatively recalcitrant to de novo regeneration, but several studies have reported shoot organogenesis or somatic embryogenesis from non-meristematic tissues. Most report infrequent regeneration rates from these tissues, but a landmark publication from 2010 achieved regeneration from leaf explants with a 96% response rate, producing an average of 12.3 shoots per explant in a single drug-type accession. Despite the importance regeneration plays in plant biotechnology and the renewed interest in this crop the aforementioned protocol has not been used in subsequent papers in the decade since it was published, raising concerns over its reproducibility. Here we attempted to replicate this important Cannabis regeneration study and expand the original scope of the study by testing it across 10 drug-type C. sativa genotypes to assess genotypic variation. In our study, callus was induced in all 10 genotypes but callus growth and appearance substantially differed among cultivars, with the most responsive genotype producing 6-fold more callus than the least responsive. The shoot induction medium failed to induce shoot organogenesis in any of the 10 cultivars tested, instead resulting in necrosis of the calli. The findings of this replication study raise concerns about the replicability of existing methods. However, some details of the protocol could not be replicated due to missing details in the original paper and regulatory issues, which could have impacted the outcome. These results highlight the importance of using multiple genotypes in such studies and providing detailed methods to facilitate replication.


Assuntos
Cannabis/crescimento & desenvolvimento , Cannabis/genética , Regeneração/genética , Genótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Reprodutibilidade dos Testes
5.
Plants (Basel) ; 10(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478171

RESUMO

The recent legalization of Cannabis sativa L. in many regions has revealed a need for effective propagation and biotechnologies for the species. Micropropagation affords researchers and producers methods to rapidly propagate insect-/disease-/virus-free clonal plants and store germplasm and forms the basis for other biotechnologies. Despite this need, research in the area is limited due to the long history of prohibitions and restrictions. Existing literature has multiple limitations: many publications use hemp as a proxy for drug-type Cannabis when it is well established that there is significant genotype specificity; studies using drug-type cultivars are predominantly optimized using a single cultivar; most protocols have not been replicated by independent groups, and some attempts demonstrate a lack of reproducibility across genotypes. Due to culture decline and other problems, the multiplication phase of micropropagation (Stage 2) has not been fully developed in many reports. This review will provide a brief background on the history and botany of Cannabis as well as a comprehensive and critical summary of Cannabis tissue culture. Special attention will be paid to current challenges faced by researchers, the limitations of existing Cannabis micropropagation studies, and recent developments and future directions of Cannabis tissue culture technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA