Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nutrients ; 14(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36364863

RESUMO

Our study aimed to show a relationship between metabolic control, vitamin D status (25OHD), and arachidonic acid (AA)/eicosapentaenoic acid (EPA) ratio in children with type 1 diabetes (T1D). The secondary aim was to evaluate dietary intake and the presence of ketoacidosis (DKA) at the onset of T1D. Methods: A cohort of 40 children with T1D was recruited, mean age 9.7 years (7.1; 13), with onset of T1D in the last 5 years: some at onset (n: 20, group A) and others after 18.0 ± 5 months (n: 20; group B). Twenty healthy children were compared as control subjects (CS). Dietary intakes were assessed through a diary food frequency questionnaire. Moreover, dried blood spots were used to test AA/EPA ratio by gas chromatography. Results: T1D children had a lower percentage of sugar intake (p < 0.02) than CS. Furthermore, group B introduced a greater amount of AA with the diet (g/day; p < 0.05) than CS (p < 0.01) and group A (p < 0.01). Children with an AA/EPA ratio ≤ 22.5 (1st quartile) required a lower insulin demand and had higher 25OHD levels than those who were in the higher quartiles (p < 0.05). Subjects with DKA (9/40) had levels of 25OHD (p < 0.05) and C-peptide (p < 0.05) lower than those without DKA. Moreover, analyzing the food questionnaire in group A, subjects with DKA showed a lower intake of proteins, sugars, fiber (g/day; p< 0.05), vitamin D, EPA, and DHA (g/day; p < 0.01) compared to subjects without DKA. Non-linear associations between vitamin D intake (p < 0.0001; r2:0.580) and linear between EPA intake and C-peptide (p < 0.05; r: 0.375) were found in all subjects. Conclusions: The study shows a relationship between vitamin D status, AA/EPA ratio, and metabolic state, probably due to their inflammatory and immune mechanisms. A different bromatological composition of the diet could impact the severity of the onset.


Assuntos
Diabetes Mellitus Tipo 1 , Ácidos Graxos Ômega-3 , Criança , Humanos , Ácido Eicosapentaenoico , Ácido Araquidônico/metabolismo , Vitamina D , Peptídeo C , Vitaminas , Ácidos Docosa-Hexaenoicos
2.
Life (Basel) ; 12(6)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35743848

RESUMO

Anhydrobiosis, a peculiar adaptive strategy existing in nature, is a reversible capability of organisms to tolerate a severe loss of their body water when their surrounding habitat is drying out. In the anhydrobiotic state, an organism lacks all dynamic features of living beings since an ongoing metabolism is absent. The depletion of water in the anhydrobiotic state increases the ionic concentration and the production of reactive oxygen species (ROS). An imbalance between the increased production of ROS and the limited action of antioxidant defences is a source of biomolecular damage and can lead to oxidative stress. The deleterious effects of oxidative stress were demonstrated in anhydrobiotic unicellular and multicellular organisms, which counteract the effects using efficient antioxidant machinery, mainly represented by ROS scavenger enzymes. To gain insights into the dynamics of antioxidant patterns during the kinetics of the anhydrobiosis of two tardigrade species, Paramacrobiotus spatialis and Acutuncus antarcticus, we investigated the activity of enzymatic antioxidants (catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase) and the amount of non-enzymatic antioxidants (glutathione) in the course of rehydration. In P. spatialis, the activity of catalase increases during dehydration and decreases during rehydration, whereas in A. antarcticus, the activity of superoxide dismutase decreases during desiccation and increases during rehydration. Genomic varieties, different habitats and geographical regions, different diets, and diverse evolutionary lineages may have led to the specialization of antioxidant strategies in the two species.

3.
Cells ; 10(1)2021 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467111

RESUMO

(1) Background: Lipid metabolism is a fundamental hallmark of all tumors, especially of breast cancer. Few studies describe the different lipid metabolisms and sensitivities to the microenvironment of breast cancer cell subtypes that influence the proliferation, aggressiveness, and success of therapy. This study describes the impact of lipid microenvironment on endoplasmic reticulum (ER) membrane and metabolic activity in two breast cancer cell lines with Luminal A and triple-negative breast cancer (TNBC) features. (2) Methods: We investigated the peculiar lipid phenotype of a TNBC cell line, MDA-MB-231, and a Luminal A cell line, MCF7, and their different sensitivity to exogenous fatty acids (i.e., palmitic acid (PA) and docosahexaenoic acid (DHA)). Moreover, we verified the impact of exogenous fatty acids on ER lipid composition. (3) Results: The data obtained demonstrate that MDA-MB-231 cells are more sensitive to the lipid microenvironment and that both PA and DHA are able to remodel their ER membranes with consequences on resident enzyme activity. On the contrary, MCF7 cells are less sensitive to PA, whereas they incorporate DHA, although less efficiently than MDA-MB-231 cells. (4) Conclusions: This study sustains the importance of lipid metabolism as an innovative hallmark to discriminate breast cancer subclasses and to develop personalized and innovative pharmacological strategies. The different sensitivities to the lipid environment shown by MCF7 and MDA-MB-231 cells might be related to cell malignancy and chemoresistance onset. In the future, this new approach could lead to a substantial decrease both in deleterious side effects for the patients and in the cost of entire therapeutic treatments coupled with increased therapy efficiency.


Assuntos
Neoplasias da Mama/metabolismo , Retículo Endoplasmático/metabolismo , Ácidos Graxos , Membranas Intracelulares/metabolismo , Neoplasias da Mama/patologia , Retículo Endoplasmático/patologia , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacologia , Feminino , Humanos , Membranas Intracelulares/patologia , Células MCF-7
4.
Antioxidants (Basel) ; 9(3)2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204441

RESUMO

In recent years, there has been a growing interest in natural antioxidants as replacements of synthetic compounds because of increased safety concerns and worldwide trend toward the usage of natural additives in foods. One of the richest sources of natural antioxidants, nowadays largely studied for their potential to decrease the risk of diseases and to improve oxidative stability of food products, are edible brown seaweeds. Nevertheless, their antioxidant mechanisms are slightly evaluated and discussed. The aims of this study were to suggest possible mechanism(s) of Fucus vesiculosus antioxidant action and to assess its bioactivity during the production of enriched rye snacks. Chemical and cell-based assays indicate that the efficient preventive antioxidant action of Fucus vesiculosus extracts is likely due to not only the high polyphenol content, but also their good Fe2+-chelating ability. Moreover, the data collected during the production of Fucus vesiculosus-enriched rye snacks show that this seaweed can increase, in appreciable measure, the antioxidant potential of enriched convenience cereals. This information can be used to design functional foods enriched in natural antioxidant ingredients in order to improve the health of targeted consumers.

5.
Nutrients ; 11(11)2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31653011

RESUMO

Plasma fatty acids (FAs) and oxidant status contribute to the etiology of sarcopenia in the elderly concurring to age-related muscle loss and elderly frailty through several mechanisms including changes in FA composition within the sarcolemma, promotion of chronic low-grade inflammation, and insulin resistance. The aim of this study was to determine the FA profile and pro-antioxidant status in sarcopenic frail elderly patients enrolled in a nutritional and physical activity program and to evaluate their correlation with clinical markers. Moreover, the possible changes, produced after a short-term clinical protocol, were evaluated. Plasma and erythrocyte FA composition and pro-antioxidant status were analyzed in sarcopenic elderly subjects recruited for the randomized clinical study and treated with a placebo or dietary supplement, a personalized diet, and standardized physical activity. Subjects were tested before and after 30 days of treatment. Pearson correlations between biochemical parameters and patients' characteristics at recruitment indicate interesting features of sarcopenic status such as negative correlation among the plasma FA profile, age, and physical characteristics. Physical activity and dietetic program alone for 30 days induced a decrease of saturated FA concentration with a significant increase of dihomo-gamma-linolenic acid. Supplementation plus physical activity induced a significant decrease of linoleic acid, omega-6 polyunsaturated FAs, and an increase of stearic and oleic acid concentration. Moreover, glutathione reductase activity, which is an indicator of antioxidant status, significantly increased in erythrocytes. Changes over time between groups indicate significant differences for saturated FAs, which suggest that the amino acid supplementation restores FA levels that are consumed during physical activity. A relationship between FA and clinical/metabolic status revealed unique correlations and a specific metabolic and lipidomic fingerprint in sarcopenic elderly. The results indicate the positive beneficial role of supplementation and physical activity on plasma FA status and the antioxidant system as a co-adjuvant approach in sarcopenic, frail, elderly patients.


Assuntos
Antioxidantes/metabolismo , Dieta , Exercício Físico , Ácidos Graxos/sangue , Sarcopenia , Idoso , Humanos
6.
Nutrients ; 11(9)2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31505819

RESUMO

Vitamin D and omega 3 fatty acid (ω-3) co-supplementation potentially improves type 1 diabetes (T1D) by attenuating autoimmunity and counteracting inflammation. This cohort study, preliminary to a randomized control trial (RCT), is aimed at evaluating, in a series of T1D children assuming Mediterranean diet and an intake of cholecalciferol of 1000U/day from T1D onset, if ω-3 co-supplementation preserves the residual endogen insulin secretion (REIS). Therefore, the cohort of 22 "new onsets" of 2017 received ω-3 (eicosapentenoic acid (EPA) plus docosahexaenoic acid (DHA), 60 mg/kg/day), and were compared retrospectively vs. the 37 "previous onsets" without ω-3 supplementation. Glicosilated hemoglobin (HbA1c%), the daily insulin demand (IU/Kg/day) and IDAA1c, a composite index (calculated as IU/Kg/day × 4 + HbA1c%), as surrogates of REIS, were evaluated at recruitment (T0) and 12 months later (T12). In the ω-3 supplemented group, dietary intakes were evaluated at T0 and T12. As an outcome, a decreased insulin demand (p < 0.01), particularly as pre-meal boluses (p < 0.01), and IDAA1c (p < 0.05), were found in the ω-3 supplemented group, while HbA1c% was not significantly different. Diet analysis in the ω-3 supplemented group, at T12 vs. T0, highlighted that the intake of arachidonic acid (AA) decreased (p < 0.01). At T0, the AA intake was inversely correlated with HbA1c% (p < 0.05; r;. 0.411). In conclusion, the results suggest that vitamin D plus ω-3 co-supplementation as well as AA reduction in the Mediterranean diet display benefits for T1D children at onset and deserve further investigation.


Assuntos
Diabetes Mellitus Tipo 1/terapia , Dieta Mediterrânea , Suplementos Nutricionais , Ácidos Graxos Ômega-3/administração & dosagem , Vitamina D/administração & dosagem , Ácido Araquidônico/administração & dosagem , Criança , Colecalciferol/administração & dosagem , Diabetes Mellitus Tipo 1/sangue , Feminino , Hemoglobinas Glicadas/análise , Humanos , Insulina/uso terapêutico , Secreção de Insulina/efeitos dos fármacos , Masculino , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Retrospectivos
7.
Int J Mol Sci ; 20(15)2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31370282

RESUMO

Ischemic-reperfusion (I/R) injury induced a remodeling of protein and lipid homeostasis, under oxidative stress and inflammatory status. Starvation occurring during I/R is a condition leading to autophagy activation, which allows abnormal material clearance or amino acid, or both, and fatty acid (FA) recycling essential for survival. This study investigated the lipid reshaping, peroxidation, and related-signaling pathways, in rat brain endothelial cells (RBE4) subjected to 3 h of oxygen and glucose deprivation (OGD) and restoration of standard condition (I/R in vitro model). Lipids and proteins were analyzed after 1 or 24 h of oxygen and nutrient restoration. Together with the oxidative stress and inflammatory status, I/R injury induced a reshaping of neutral lipids and biogenesis of lipid droplets (LD) with excessive lipid storage. The increase of LC3-II/LC3-I ratio, an autophagy marker, and LC3 co-localization with LD suggest the activation of lipophagy machinery to counteract the cell engulfment. Lipophagy leads to cholesterol ester (CE) hydrolysis, increasing free cholesterol (FC) secretion, which occurred by specific transporters or unconventional exocytosis pathways, or both. Here, we propose that an unconventional spreading of FC and other lipid metabolites may influence the neurovascular unit (NVU) cells, contributing to Blood brain barrier (BBB) alteration or adaptation, or both, to the cumulative effects of several transient ischemia.


Assuntos
Autofagia/efeitos dos fármacos , Células Endoteliais/metabolismo , Glucose/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Oxigênio/farmacologia , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Hipóxia Celular , Linhagem Celular , Colesterol/metabolismo , Ésteres do Colesterol/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Expressão Gênica/efeitos dos fármacos , Glucose/deficiência , Gotículas Lipídicas/efeitos dos fármacos , Gotículas Lipídicas/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia
8.
Mol Genet Metab ; 121(2): 180-189, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28456385

RESUMO

Pantothenate Kinase-Associated Neurodegeneration (PKAN) is a form of Neurodegeneration with Brain Iron Accumulation (NBIA) associated with mutations in the pantothenate kinase 2 gene (PANK2). The PANK2 catalyzes the first step of coenzyme A (CoA) biosynthesis, a pathway producing an essential cofactor that plays a key role in energy and lipid metabolism. The majority of PANK2 mutations reduces or abolishes the activity of the enzyme. In around 10% of cases with PKAN, the presence of deformed red blood cells with thorny protrusions in the circulation has been detected. Changes in membrane protein expression and assembly during erythropoiesis were previously explored in patients with PKAN. However, data on red blood cell membrane phospholipid organization are still missing in this disease. In this study, we performed lipidomic analysis on red blood cells from Italian patients affected by PKAN with a particular interest in membrane physico-chemical properties. We showed an increased number of small red blood cells together with membrane phospholipid alteration, particularly a significant increase in sphingomyelin (SM)/phosphatidylcholine (PC) and SM/phosphatidylethanolamine (PE) ratios, in subjects with PKAN. The membrane structural abnormalities were associated with membrane fluidity perturbation. These morphological and functional characteristics of red blood cells in patients with PKAN offer new possible tools in order to shed light on the pathogenesis of the disease and to possibly identify further biomarkers for clinical studies.


Assuntos
Membrana Eritrocítica/química , Lipídeos de Membrana/sangue , Neurodegeneração Associada a Pantotenato-Quinase/sangue , Neurodegeneração Associada a Pantotenato-Quinase/fisiopatologia , Fosfolipídeos/sangue , Adulto , Biomarcadores/sangue , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Criança , Membrana Eritrocítica/fisiologia , Feminino , Humanos , Ferro/metabolismo , Imageamento por Ressonância Magnética , Masculino , Fluidez de Membrana , Lipídeos de Membrana/química , Proteínas de Membrana/genética , Mitocôndrias/enzimologia , Mitocôndrias/ultraestrutura , Mutação , Neurodegeneração Associada a Pantotenato-Quinase/genética , Fosfolipídeos/química , Adulto Jovem
9.
Lipids Health Dis ; 14: 139, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26511930

RESUMO

BACKGROUND: Nowadays no researches has been performed on fatty acid profile (FA) and desaturase activity in metabolically healthy obesity (MHO). The aim of this study was to assessed gender and BMI-related difference in FA, estimated desaturase activities and the efficacy on metabolic changes produced by 2-months well-balance diet in MHO subjects. METHODS: In 103 MHO subjects (30/73 M/F; age:42.2 ± 9.5) FA, estimated desaturase activity, body composition (by DXA), Body Mass Index (BMI), lipid profile, adipokines (leptin, adiponectin, grelin, glucagon-like peptide-1), insulin resistence (by Homestasis metabolic assessment), C-reactive proteine, Atherogenic index of plasma (AIP) and Body Shape Index (ABSI) have been assessed. Gender and BMI related difference have been evaluated and the efficacy produced by 2-months well-balance diet has been considered. RESULTS: At baseline, obese subjects, compared to overweight, show a significantly higher oleic (p <0.050), monounsaturated fatty acids (p <0.040), C18:0 delta-9 desaturase activity (D9D) (p <0.040) and lower linoleic acid (p <0.020), polyunsaturated fatty acids (p <0.020) and n-6 LCPUFA (p <0.010). Concerning gender-related difference, women show a significantly higher arachidonic acid (p <0.001), polyunsaturated fatty acids (p <0.001), n-6 LCPUFA (p <0.002), and lower monounsaturated fatty acids (p <0.001), D6D activity (p <0.030), C18:0 D9D (0.000) and C16:0 D9D (p <0.030). The 2-months diet was associated with a significantly increase in arachidonic acid (p = 0.007), eicosapentaenoic acid (p = 0.030), docosahexaenoic acid (p <0.001), long chain omega 3 polyunsaturated fatty acids (n-3 LCPUFA) (p <0.001), delta-5 desaturase activity (D5D) (p = 0.002), glucagon like peptide-1 (p <0.001) and a significant decrease in palmitoleic acid (p = <0.030), n-6/n-3 LCPUFA (p <0.001), insulin resistance (p = 0.006), leptin (p = 0.006), adiponectin (p <0.001), grelin (p = 0.030), CRP (p = 0.004), BMI (p <0.001) and android fat mass (p <0.001). CONCLUSIONS: The balanced diet intervention was effective in improving metabolic indices.


Assuntos
Índice de Massa Corporal , Dieta , Carboidratos da Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Obesidade Metabolicamente Benigna/sangue , Adiponectina/sangue , Adulto , Ácido Araquidônico/sangue , Composição Corporal , Proteína C-Reativa/metabolismo , Dessaturase de Ácido Graxo Delta-5 , Ácidos Graxos Dessaturases/sangue , Ácidos Graxos Monoinsaturados/sangue , Ácidos Graxos Insaturados/sangue , Feminino , Grelina/sangue , Peptídeo 1 Semelhante ao Glucagon/sangue , Humanos , Resistência à Insulina , Leptina/sangue , Ácido Linoleico/sangue , Masculino , Pessoa de Meia-Idade , Obesidade Metabolicamente Benigna/tratamento farmacológico , Fatores Sexuais , Triglicerídeos/sangue
10.
Biomed Res Int ; 2015: 167642, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25654086

RESUMO

The TARDIKISS (Tardigrades in Space) experiment was part of the Biokon in Space (BIOKIS) payload, a set of multidisciplinary experiments performed during the DAMA (Dark Matter) mission organized by Italian Space Agency and Italian Air Force in 2011. This mission supported the execution of experiments in short duration (16 days) taking the advantage of the microgravity environment on board of the Space Shuttle Endeavour (its last mission STS-134) docked to the International Space Station. TARDIKISS was composed of three sample sets: one flight sample and two ground control samples. These samples provided the biological material used to test as space stressors, including microgravity, affected animal survivability, life cycle, DNA integrity, and pathways of molecules working as antioxidants. In this paper we compared the molecular pathways of some antioxidant molecules, thiobarbituric acid reactive substances, and fatty acid composition between flight and control samples in two tardigrade species, namely, Paramacrobiotus richtersi and Ramazzottius oberhaeuseri. In both species, the activities of ROS scavenging enzymes, the total content of glutathione, and the fatty acids composition between flight and control samples showed few significant differences. TARDIKISS experiment, together with a previous space experiment (TARSE), further confirms that both desiccated and hydrated tardigrades represent useful animal tool for space research.


Assuntos
Antioxidantes/metabolismo , Voo Espacial , Tardígrados/enzimologia , Tardígrados/fisiologia , Animais , Catalase/metabolismo , Ácidos Graxos/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Superóxido Dismutase/metabolismo , Tardígrados/efeitos dos fármacos , Tardígrados/ultraestrutura , Temperatura
11.
PLoS One ; 9(9): e106855, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25259850

RESUMO

Adverse health effects of air pollution attributed mainly to airborne particulate matter have been well documented in the last couple of decades. Short term exposure, referring to a few hours exposure, to high ambient PM10 concentration is linked to increased hospitalization rates for cardiovascular events, typically 24 h after air pollution peaks. Particulate matter exposure is related to pulmonary and cardiovascular diseases, with increased oxidative stress and inflammatory status. Previously, we have demonstrated that repeated intratracheal instillation of PM10sum in BALB/c mice leads to respiratory tract inflammation, creating in lung a condition which could potentially evolve in a systemic toxic reaction. Additionally, plasma membrane and tissue lipids are easily affected by oxidative stress and directly correlated with inflammatory products. With this aim, in the present investigation using the same model, we analyzed the toxic potential of PM10sum exposure on lipid plasma membrane composition, lipid peroxidation and the mechanisms of cells protection in multiple organs such as lung, heart, liver and brain. Obtained results indicated that PM10 exposure led to lung lipid reshaping, in particular phospholipid and cholesterol content increases; concomitantly, the generation of oxidative stress caused lipid peroxidation. In liver we found significant changes in lipid content, mainly due to an increase of phosphatidylcholine, and in total fatty acid composition with a more pronounced level of docosahexaenoic acid; these changes were statistically correlated to lung molecular markers. Heart and brain were similarly affected; heart was significantly enriched in triglycerides in half of the PM10sum treated mice. These results demonstrated a direct involvement of PM10sum in affecting lipid metabolism and oxidative stress in peripheral tissues that might be related to the serious systemic air-pollution effects on human health.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Metabolismo dos Lipídeos , Pulmão/metabolismo , Pulmão/patologia , Material Particulado/efeitos adversos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Ácidos Graxos/metabolismo , Expressão Gênica , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Modelos Animais , Miocárdio/metabolismo , Miocárdio/patologia , Tamanho da Partícula , Material Particulado/administração & dosagem , Proteômica
12.
Eur J Hum Genet ; 22(5): 633-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24045840

RESUMO

The ABCB4 gene encodes for MDR3, a protein that translocates phosphatidylcholine from the inner to the outer leaflet of the hepatocanalicular membrane; its deficiency favors the formation of 'toxic bile'. Several forms of hepatobiliary diseases have been associated with ABCB4 mutations, but the detrimental effects of most mutations on the encoded protein needs to be clarified. Among subjects with cholangiopathies who were screened for mutations in ABCB4 by direct sequencing, we identified the new mutation p.(L481R) in three brothers. According to our model of tertiary structure, this mutation affects the Q-loop, whereas the p.(Y403H) mutation, that we already described in two other families, involves the A-loop. This study was aimed at analyzing the functional relevance of these two ABCB4 mutations: MDR3 expression and lipid content in the culture supernatant were evaluated in cell lines stably transfected with the ABCB4 wild-type clone and corresponding mutants. No differences of expression were observed between wild-type and mutant gene products. Instead, both mutations caused a reduction of phosphatidylcholine secretion compared with the wild-type transfected cell lines. On the contrary, cholesterol (Chol) release, after 1 and 3 mM sodium taurocholate stimulation, was higher in the mutant-transfected cell lines than that in the wild-type and was particularly enhanced in cells transfected with the p.Y403H-construct.In summary, our data show that both mutations do not seem to affect protein expression, but are able to reduce the efflux of phosphatidylcholine associated with increase of Chol, thereby promoting the formation of toxic bile.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membrana Celular/metabolismo , Mutação Puntual , Domínios e Motivos de Interação entre Proteínas/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Adulto , Linhagem Celular , Pré-Escolar , Feminino , Expressão Gênica , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Transfecção
13.
Mol Cancer ; 12: 137, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24225025

RESUMO

BACKGROUND: The activity of P-glycoprotein (Pgp) and multidrug resistance related protein 1 (MRP1), two membrane transporters involved in multidrug resistance of colon cancer, is increased by high amounts of cholesterol in plasma membrane and detergent resistant membranes (DRMs). It has never been investigated whether omega 3 polyunsatured fatty acids (PUFAs), which modulate cholesterol homeostasis in dyslipidemic syndromes and have chemopreventive effects in colon cancer, may affect the response to chemotherapy in multidrug resistant (MDR) tumors. METHODS: We studied the effect of omega 3 PUFAs docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in human chemosensitive colon cancer HT29 cells and in their MDR counterpart, HT29-dx cells. RESULTS: MDR cells, which overexpressed Pgp and MRP1, had a dysregulated cholesterol metabolism, due to the lower expression of ubiquitin E3 ligase Trc8: this produced lower ubiquitination rate of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCoAR), higher cholesterol synthesis, higher cholesterol content in MDR cells. We found that DHA and EPA re-activated Trc8 E3 ligase in MDR cells, restored the ubiquitination rate of HMGCoAR to levels comparable with chemosensitive cells, reduced the cholesterol synthesis and incorporation in DRMs. Omega 3 PUFAs were incorporated in whole lipids as well as in DRMs of MDR cells, and altered the lipid composition of these compartments. They reduced the amount of Pgp and MRP1 contained in DRMs, decreased the transporters activity, restored the antitumor effects of different chemotherapeutic drugs, restored a proper tumor-immune system recognition in response to chemotherapy in MDR cells. CONCLUSIONS: Our work describes a new biochemical effect of omega 3 PUFAs, which can be useful to overcome chemoresistance in MDR colon cancer cells.


Assuntos
Membrana Celular/metabolismo , Colesterol/biossíntese , Neoplasias do Colo/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Hidroximetilglutaril-CoA Redutases/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antibióticos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/imunologia , Ácidos Docosa-Hexaenoicos/metabolismo , Regulação para Baixo , Doxorrubicina/uso terapêutico , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Ácido Eicosapentaenoico/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HT29 , Humanos , Fosforilação , Ubiquitinação
14.
Nutr J ; 11: 82, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23046564

RESUMO

BACKGROUND: Depression is one of the most frequently missed diagnoses in elderly people, with obvious negative effects on quality of life. Various studies have shown that long chain omega-3 polyunsaturated fatty acids (n-3 PUFA) may be useful in its management. Our objective was to evaluate whether a supplement containing n-3 PUFA improves depressive symptoms in depressed elderly patients, and whether the blood fatty acid pattern is correlated with these changes. METHODS: The severity of depressive symptoms according to the Geriatric Depression Scale (GDS), blood fatty acid composition and erythrocyte phospholipids were analyzed in 46 depressed females aged 66-95y, diagnosed with depression according to DSMIV, within the context of a randomized, double-blind, placebo-controlled trial. 22 depressed females were included in the intervention group (2.5 g/day of n-3 PUFA for 8 weeks), and 24 in the placebo group. We also measured immunological parameters (CD2, CD3, CD4, CD8, CD16, CD19 and cytokines (IL-5, IL-15). RESULTS: The mean GDS score and AA/EPA ratio, in whole blood and RBC membrane phospholipids, were significantly lower after 2 months supplementation with n-3 PUFA. A significant correlation between the amelioration of GDS and the AA/EPA ratio with some immunological parameters, such as CD2, CD19, CD4, CD16 and the ratio CD4/CD8, was also found. Nevertheless, omega-3 supplementation did not significantly improve the studied immunological functions. CONCLUSIONS: n-3 PUFA supplementation ameliorates symptoms in elderly depression. The n-3 PUFA status may be monitored by means of the determination of whole blood AA/EPA ratio.


Assuntos
Envelhecimento , Ácido Araquidônico/sangue , Depressão/sangue , Depressão/dietoterapia , Suplementos Nutricionais , Ácido Eicosapentaenoico/sangue , Ácidos Graxos Ômega-3/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Antidepressivos/uso terapêutico , Antígenos CD/sangue , Citocinas/sangue , Depressão/imunologia , Depressão/fisiopatologia , Manual Diagnóstico e Estatístico de Transtornos Mentais , Método Duplo-Cego , Membrana Eritrocítica/metabolismo , Feminino , Avaliação Geriátrica , Humanos , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Fosfolipídeos/sangue , Fosfolipídeos/química , Índice de Gravidade de Doença
15.
Cell Biochem Biophys ; 64(1): 45-59, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22622660

RESUMO

Epidemiologic and experimental studies suggest that dietary fatty acids influence the development and progression of breast cancer. However, no clear data are present in literature that could demonstrate how n - 3 PUFA can interfere with breast cancer growth. It is suggested that these fatty acids might change the structure of cell membrane, especially of lipid rafts. During this study we treated MCF-7 and MDA-MB-231 cells with AA, EPA, and DHA to assess if they are incorporated in lipid raft phospholipids and are able to change chemical and physical properties of these structures. Our data demonstrate that PUFA and their metabolites are inserted with different yield in cell membrane microdomains and are able to alter fatty acid composition without decreasing the total percentage of saturated fatty acids that characterize these structures. In particular in MDA-MB-231 cells, that displays the highest content of Chol and saturated fatty acids, we observed the lowest incorporation of DHA, probably for sterical reasons; nevertheless DHA was able to decrease Chol and SM content. Moreover, PUFA are incorporated in breast cancer lipid rafts with different specificity for the phospholipid moiety, in particular PUFA are incorporated in PI, PS, and PC phospholipids that may be relevant to the formation of PUFA metabolites (prostaglandins, prostacyclins, leukotrienes, resolvines, and protectines) of phospholipids deriving second messengers and signal transduction activation. The bio-physical changes after n - 3 PUFA incubation have also been highlighted by atomic force microscopy. In particular, for both cell lines the DHA treatment produced a decrease of the lipid rafts in the order of about 20-30 %. It is worth noticing that after DHA incorporation lipid rafts exhibit two different height ranges. In fact, some lipid rafts have a higher height of 6-6.5 nm. In conclusion n - 3 PUFA are able to modify lipid raft biochemical and biophysical features leading to decrease of breast cancer cell proliferation probably through different mechanisms related to acyl chain length and unsaturation. While EPA may contribute to cell apoptosis mainly through decrease of AA concentration in lipid raft phospholipids, DHA may change the biophysical properties of lipid rafts decreasing the content of cholesterol and probably the distribution of key proteins.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Microdomínios da Membrana/química , Microdomínios da Membrana/fisiologia , Apoptose , Ácido Araquidônico/farmacologia , Neoplasias da Mama/química , Proliferação de Células/efeitos dos fármacos , Colesterol/química , Feminino , Humanos , Células MCF-7 , Microdomínios da Membrana/efeitos dos fármacos , Microscopia de Força Atômica , Fosfolipídeos/química , Esfingomielinas/química
16.
PLoS One ; 7(3): e32361, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22412864

RESUMO

Erythrocyte and hemoglobin losses have been frequently observed in humans during space missions; these observations have been designated as "space anemia". Erythrocytes exposed to microgravity have a modified rheology and undergo hemolysis to a greater extent. Cell membrane composition plays an important role in determining erythrocyte resistance to mechanical stress and it is well known that membrane composition might be influenced by external events, such as hypothermia, hypoxia or gravitational strength variations. Moreover, an altered cell membrane composition, in particular in fatty acids, can cause a greater sensitivity to peroxidative stress, with increase in membrane fragility. Solar radiation or low wavelength electromagnetic radiations (such as gamma rays) from the Earth or the space environment can split water to generate the hydroxyl radical, very reactive at the site of its formation, which can initiate chain reactions leading to lipid peroxidation. These reactive free radicals can react with the non-radical molecules, leading to oxidative damage of lipids, proteins and DNA, etiologically associated with various diseases and morbidities such as cancer, cell degeneration, and inflammation. Indeed, radiation constitutes on of the most important hazard for humans during long-term space flights. With this background, we participated to the MDS tissue-sharing program performing analyses on mice erythrocytes flown on the ISS from August to November 2009. Our results indicate that space flight induced modifications in cell membrane composition and increase of lipid peroxidation products, in mouse erythrocytes. Moreover, antioxidant defenses in the flight erythrocytes were induced, with a significant increase of glutathione content as compared to both vivarium and ground control erythrocytes. Nonetheless, this induction was not sufficient to prevent damages caused by oxidative stress. Future experiments should provide information helpful to reduce the effects of oxidative stress exposure and space anemia, possibly by integrating appropriate dietary elements and natural compounds that could act as antioxidants.


Assuntos
Eritrócitos/metabolismo , Estresse Oxidativo , Ausência de Peso/efeitos adversos , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Índices de Eritrócitos , Membrana Eritrocítica/metabolismo , Eritrócitos/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oxirredução/efeitos dos fármacos , Fatores de Tempo
17.
Lipids Health Dis ; 10: 73, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21569413

RESUMO

BACKGROUND: PUFAs are important molecules for membrane order and function; they can modify inflammation-inducible cytokines production, eicosanoid production, plasma triacylglycerol synthesis and gene expression. Recent studies suggest that n-3 PUFAs can be cancer chemopreventive, chemosuppressive and auxiliary agents for cancer therapy. N-3 PUFAs could alter cancer growth influencing cell replication, cell cycle, and cell death. The question that remains to be answered is how n-3 PUFAs can affect so many physiological processes. We hypothesize that n-3 PUFAs alter membrane stability, modifying cellular signalling in breast cancer cells. METHODS: Two lines of human breast cancer cells characterized by different expression of ER and EGFR receptors were treated with AA, EPA or DHA. We have used the MTT viability test and expression of apoptotic markers to evaluate the effect of PUFAs on cancer growth. Phospholipids were analysed by HPLC/GC, to assess n-3 incorporation into the cell membrane. RESULTS: We have observed that EPA and DHA induce cell apoptosis, a reduction of cell viability and the expression of Bcl2 and procaspase-8. Moreover, DHA slightly reduces the concentration of EGFR but EPA has no effect. Both EPA and DHA reduce the activation of EGFR.N-3 fatty acids are partially metabolized in both cell lines; AA is integrated without being further metabolized. We have analysed the fatty acid pattern in membrane phospholipids where they are incorporated with different degrees of specificity. N-3 PUFAs influence the n-6 content and vice versa. CONCLUSIONS: Our results indicate that n-3 PUFA feeding might induce modifications of breast cancer membrane structure that increases the degree of fatty acid unsaturation. This paper underlines the importance of nutritional factors on health maintenance and on disease prevention.


Assuntos
Neoplasias da Mama/patologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/enzimologia , Caspase 8/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/metabolismo , Feminino , Humanos , Fosfolipídeos/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
18.
Mol Pharm ; 8(3): 683-700, 2011 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-21491921

RESUMO

The most frequent drawback of doxorubicin is the onset of drug resistance, due to the active efflux through P-glycoprotein (Pgp). Recently formulations of liposome-encapsulated doxorubicin have been approved for the treatment of tumors resistant to conventional anticancer drugs, but the molecular basis of their efficacy is not known. To clarify by which mechanisms the liposome-encapsulated doxorubicin is effective in drug-resistant cancer cells, we analyzed the effects of doxorubicin and doxorubicin-containing anionic liposomal nanoparticles ("Lipodox") on the drug-sensitive human colon cancer HT29 cells and on the drug-resistant HT29-dx cells. Interestingly, we did not detect any difference in drug accumulation and toxicity between free doxorubicin and Lipodox in HT29 cells, but Lipodox was significantly more effective than doxorubicin in HT29-dx cells, which are rich in Pgp. This effect was lost in HT29-dx cells silenced for Pgp and acquired by HT29 cells overexpressing Pgp. Lipodox was less extruded by Pgp than doxorubicin and inhibited the pump activity. This inhibition was due to a double effect: the liposome shell per se altered the composition of rafts in resistant cells and decreased the lipid raft-associated amount of Pgp, and the doxorubicin-loaded liposomes directly impaired transport and ATPase activity of Pgp. The efficacy of Lipodox was not increased by verapamil and cyclosporin A and was underwent interference by colchicine. Binding assays revealed that Lipodox competed with verapamil for binding Pgp and hampered the interaction of colchicine with this transporter. Site-directed mutagenesis experiments demonstrated that glycine 185 is a critical residue for the direct inhibitory effect of Lipodox on Pgp. Our work describes novel properties of liposomal doxorubicin, investigating the molecular bases that make this formulation an inhibitor of Pgp activity and a vehicle particularly indicated against drug-resistant tumors.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Doxorrubicina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Western Blotting , Linhagem Celular Tumoral , Colchicina/farmacologia , Ciclosporina/farmacologia , Doxorrubicina/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Imunofluorescência , Células HT29 , Humanos , Concentração Inibidora 50 , Mutagênese Sítio-Dirigida , Verapamil/farmacologia
19.
Cell Biol Int ; 35(3): 249-58, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20946105

RESUMO

Numerous studies indicate that microgravity affects cell growth and differentiation in many living organisms, and various processes are modified when cells are placed under conditions of weightlessness. However, until now, there is no coherent explanation for these observations, and little information is available concerning the biomolecules involved. Our aim has been to investigate the protein pattern of Xenopus laevis embryos exposed to simulated microgravity during the first 6 days of development. A proteomic approach was applied to compare the protein profiles of Xenopus embryos developed in simulated microgravity and in normal conditions. Attention was focused on embryos that do not present visible malformations in order to investigate if weightlessness has effects at protein level in the absence of macroscopic alterations. The data presented strongly suggest that some of the major components of the cytoskeleton vary in such conditions. Three major findings are described for the first time: (i) the expression of important factors involved in the organization and stabilization of the cytoskeleton, such as Arp (actin-related protein) 3 and stathmin, is heavily affected by microgravity; (ii) the amount of the two major cytoskeletal proteins, actin and tubulin, do not change in such conditions; however, (iii) an increase in the tyrosine nitration of these two proteins can be detected. The data suggest that, in the absence of morphological alterations, simulated microgravity affects the intracellular movement system of cells by altering cytoskeletal proteins heavily involved in the regulation of cytoskeleton remodelling.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Embrião não Mamífero/metabolismo , Proteínas de Xenopus/metabolismo , Proteína 3 Relacionada a Actina/metabolismo , Actinas/metabolismo , Animais , Eletroforese em Gel Bidimensional , Desenvolvimento Embrionário , Nitratos/química , Nitratos/metabolismo , Fosforilação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Estatmina/metabolismo , Tubulina (Proteína)/metabolismo , Tirosina/metabolismo , Ausência de Peso , Simulação de Ausência de Peso , Xenopus laevis
20.
J Agric Food Chem ; 58(21): 11428-34, 2010 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-20949967

RESUMO

Oxidative stress is strictly correlated to the pathogenesis of many diseases, and a diet rich in fruits and vegetables, or adequately integrated, is currently considered to be a protective and preventive factor. This study aimed to analyze the efficacy of a 1 h preincubation with the highest nontoxic dose of a characterized Mentha longifolia extract (80 µg/mL) in protecting human keratinocytes (NCTC2544) from chemically induced oxidative stress (500 µM H2O2 for 2, 16, and 24 h). As reference synthetic pure compounds rosmarinic acid (360.31 µg/mL), a major mint phenolic constituent, and resveratrol (31.95 mg/mL), a well-known antioxidant, were used. Cellular viability was significantly protected by mint, which limited protein and DNA damage, decreased lipid peroxidation, and preserved glutathione and superoxide dismutase activity in the shorter phases of oxidative stress induction, in extents comparable to or better than those of pure compounds. These data suggest that mint use as only a flavoring has to be revised, taking into consideration its enrichment in foodstuff and cosmetics.


Assuntos
Queratinócitos/efeitos dos fármacos , Mentha/química , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Humanos , Queratinócitos/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA