Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Vet Sci ; 10(9)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37756081

RESUMO

The present study investigated the impact of rumen-protected (RP) methionine supplementation on the resistance and resilience to Haemonchus contortus experimental infection of goat kids. Twenty-seven 6-month-old goat kids (14.55 ± 2.7 kg body weight) were placed in individual pens during an experimental period of forty-two days. Each kid was placed under one of three distinct diets (n = 9 animals/diet) corresponding to the following experimental groups: Control (C, Hay + concentrate), Low Methionine (LM, Hay + concentrate + 3.5 g/Kg of Dry Matter (DM) of RP methionine, or High Methionine (HM, Hay + concentrate + 11.5 g/Kg of DM of RP methionine). After a 4-week period of adaptation to the diets, all the animals were experimentally infected with a single oral dose of 10,000 H. contortus third-stage infective larvae (L3). No significant effect of RP methionine supplementation was observed for feed intake, digestibility and growth performance. The faecal egg counts (FEC) and worm burdens were not impacted by RP methionine supplementation either. In contrast, Packed cell volume (PCV) and haemoglobin concentration were higher in kids supplemented with RP methionine. Similarly, the level of serum IgA directed against adult H. contortus excretion and secretion products (ESP) was higher in supplemented kids. These results suggested that RP methionine supplementation improved goat kids' resilience against H. contortus infection.

2.
Sci Rep ; 13(1): 2450, 2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774423

RESUMO

Haemonchus contortus is one of the most detrimental gastrointestinal nematode parasites for small ruminants, especially in tropics and subtropics. Gastrointestinal nematode and microbiota share the same microhabitat; thus they interact with each other and their host. Metagenomics tools provide a promising way to examine the alterations in the gastric microbial composition induces by gastrointestinal parasites. In this study, we used metagenomics tools to characterize the impact of H. contortus infection on the caprine abomasal microbiota at early and late stage of infection and compared it with non-infected control. Our results showed that H. contortus infection caused a significant increase in abomasal pH at early (7 days post-infection) and late stage of infection (56 days post-infection). The analysis of alpha and beta diversity showed that the microbiota diversity both in number and in proportion was significantly affected at early and late stage of infection. All microbiota classes are impacted by H. contortus infection but Clostridia and Bacteroidia are more concerned. In infected animals, the genera Prevotella decreased at 7 and 56 days post-infection. Here we showed that the abomasal microbiota was significantly affected early after H. contortus infection, and these changes persist at late stage of the infection.


Assuntos
Hemoncose , Haemonchus , Microbiota , Doenças dos Ovinos , Animais , Ovinos , Metagenoma , Haemonchus/genética , Cabras , Microbiota/genética , Abomaso , Hemoncose/veterinária , Hemoncose/parasitologia , Doenças dos Ovinos/parasitologia
3.
Animals (Basel) ; 11(10)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34679833

RESUMO

Infectious diseases represent one of the most critical threats to animal production worldwide. Due to the rise of pathogen resistance and consumer concern about chemical-free and environmentally friendly productions, the use of antimicrobials drugs is no longer desirable. The close relationship between nutrition and infection has led to numerous studies about livestock. The impact of feeding strategies, including synthetic amino acid supplementation, on host response to various infections has been investigated in different livestock animals. This systematic review provides a synthesis of the experimental studies on the interactions between synthetic amino acid supplementation and immune response to infectious diseases in livestock. Following PRISMA guidelines, quantitative research was conducted using two literature databases, PubMed and Web of Science. The eligibility criteria for the research articles were: (1) the host is a livestock animal; (2) the supplementation with at least one synthetic amino acid; (3) at least one mediator of immunity is measured; (4) at least one production trait is measured. Data were extracted from 58 selected studies. Articles on poultry were the most numerous; few contained experiments using ruminants and pigs. Most of the authors hypothesized that synthetic amino acid supplementation would particularly improve the animals' immune response against intracellular pathogens. An increase in T and natural killer lymphocytes and macrophages activation, intracellular redox state, lymphocytes proliferation and antibodies production were the most described immune mechanisms associated with synthetic amino acid supplementation. Most of the selected studies focused on three amino acids (methionine, threonine and arginine), all of which are associated with a significant improvement of the host immune response. The use of synthetic amino acid supplementation appears as an encouraging perspective for livestock infectious disease management, and research must concentrate on more analytical studies using these three amino acids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA