Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Malar J ; 23(1): 87, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532416

RESUMO

BACKGROUND: The Magude Project assessed the feasibility of eliminating malaria in Magude district, a low transmission setting in southern Mozambique, using a package of interventions, including long-lasting insecticidal nets (LLINs). As the efficacy of LLINs depends in part on their physical integrity, this metric was quantified for Olyset® Nets post mass-distribution, in addition to net use, care and handling practices and other risk factors associated with net physical integrity. METHODS: Nets were collected during a cross-sectional net evaluation, nine months after the Magude project commenced, which was 2 years after the nets were distributed by the National Malaria Control Programme (NMCP). The physical integrity of the nets was assessed by counting and sizing the holes at different positions on each net. A structured questionnaire was administered to assess how the selected net was used and treated (care, wash and repair). Net bio-efficacy was assessed following the standard World Health Organization (WHO) cone bioassay procedures. RESULTS: Out of the 170 Olyset® Nets included in the analysis, 63.5% had been used the night before. The main reason for not using a net was the notion that there were no mosquitoes present. The average number of people using each net was 1.79. Two thirds of the nets had only been washed once or twice since distribution. Most nets (80.9%) were holed and 18% were torn, but none of the risk factors were significantly associated with net integrity, except for presence of mice in the household. Less than half of the participants noticed holes in holed nets, and of those only 38.6% attempted to repair those. None of the six nets that were tested for bio-efficacy passed the WHO threshold of 80% mosquito mortality. CONCLUSION: Overall the majority of Olyset® Nets were in serviceable condition two years post-distribution, but their insecticidal effect may have been lost. This study-together with previous evidence on suboptimal access to and use of LLINs in Magude district-highlights that LLINs as an intervention could have been optimized during the Magude project to achieve maximum intervention impact.


Assuntos
Culicidae , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Humanos , Animais , Camundongos , Estudos Transversais , Moçambique , Controle de Mosquitos/métodos , Malária/prevenção & controle
2.
Malar J ; 22(1): 187, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37337209

RESUMO

BACKGROUND: Anopheles stephensi is an efficient vector of both Plasmodium falciparum and Plasmodium vivax in South Asia and the Middle East. The spread of An. stephensi to countries within the Horn of Africa threatens progress in malaria control in this region as well as the rest of sub-Saharan Africa. METHODS: The available malaria data and the timeline for the detection of An. stephensi was reviewed to analyse the role of An. stephensi in malaria transmission in Horn of Africa of the Eastern Mediterranean Region (EMR) in Djibouti, Somalia, Sudan and Yemen. RESULTS: Malaria incidence in Horn of Africa of EMR and Yemen, increased from 41.6 in 2015 to 61.5 cases per 1000 in 2020. The four countries from this region, Djibouti, Somalia, Sudan and Yemen had reported the detection of An. stephensi as of 2021. In Djibouti City, following its detection in 2012, the estimated incidence increased from 2.5 cases per 1000 in 2013 to 97.6 cases per 1000 in 2020. However, its contribution to malaria transmission in other major cities and in other countries, is unclear because of other factors, quality of the urban malaria data, human mobility, uncertainty about the actual arrival time of An. stephensi and poor entomological surveillance. CONCLUSIONS: While An. stephensi may explain a resurgence of malaria in Djibouti, further investigations are needed to understand its interpretation trends in urban malaria across the greater region. More investment for multisectoral approach and integrated surveillance and control should target all vectors particularly malaria and dengue vectors to guide interventions in urban areas.


Assuntos
Anopheles , Malária , Animais , Humanos , Saúde Pública , Iêmen/epidemiologia , Mosquitos Vetores , Malária/epidemiologia , Malária/prevenção & controle , Organização Mundial da Saúde , Sudão
3.
Malar J ; 22(1): 91, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899358

RESUMO

BACKGROUND: This report is based on the 2021 annual meeting of the Asia-Pacific Malaria Elimination Network Surveillance and Response Working Group held online on November 1-3, 2021. In light of the 2030 regional malaria elimination goal, there is an urgency for Asia-Pacific countries to accelerate progress towards national elimination and prevent re-establishment. The Asia Pacific Malaria Elimination Network (APMEN) Surveillance Response Working Group (SRWG) supports elimination goals of national malaria control programmes (NMCPs) by expanding the knowledge base, guiding the region-specific operational research agenda and addressing evidence gaps to improve surveillance and response activities. METHODS: An online annual meeting was hosted from 1 to 3 November 2021, to reflect on research needed to support malaria elimination in the region, challenges with malaria data quality and integration, current surveillance-related technical tools, and training needs of NMCPs to support surveillance and response activities. Facilitator-led breakout groups were held during meeting sessions to encourage discussion and share experience. A list of identified research priorities was voted on by attendees and non-attending NMCP APMEN contacts. FINDINGS: 127 participants from 13 country partners and 44 partner institutions attended the meeting, identifying strategies to address malaria transmission amongst mobile and migrant populations as the top research priority, followed by cost effective surveillance strategies in low resource settings, and integration of malaria surveillance into broader health systems. Key challenges, solutions and best practices for improving data quality and integrating epidemiology and entomology data were identified, including technical solutions to improve surveillance activities, guiding priority themes for hosting informative webinars, training workshops and technical support initiatives. Inter-regional partnerships and SRWG-led training plans were developed in consultation with members to be launched from 2022 onwards. CONCLUSION: The 2021 SRWG annual meeting provided an opportunity for regional stakeholders, both NMCPs and APMEN partner institutions, to highlight remaining challenges and barriers and identify research priorities pertaining to surveillance and response in the region, and advocate for strengthening capacity through training and supportive partnerships.


Assuntos
Erradicação de Doenças , Malária , Humanos , Malária/prevenção & controle , Ásia/epidemiologia , Pesquisa Operacional
4.
PLos ONE ; 17(9): 1-24, set. 2022. mapas, graf, ilus
Artigo em Inglês | RSDM, Sec. Est. Saúde SP | ID: biblio-1562558

RESUMO

The "Magude project" aimed but failed to interrupt local malaria transmission in Magude district, southern Mozambique, by using a comprehensive package of interventions, including indoor residual spraying (IRS), pyrethroid-only long-lasting insecticide treated nets (LLINs) and mass-drug administration (MDA). Here we present detailed information on the vector species that sustained malaria transmission, their association with malaria incidence and behaviors, and their amenability to the implemented control interventions. Mosquitoes were collected monthly between May 2015 and October 2017 in six sentinel sites in Magude district, using CDC light traps both indoors and outdoors. Anopheles arabiensis was the main vector during the project, while An. funestus s.s., An. merus, An. parensis and An. squamosus likely played a secondary role. The latter two species have never previously been found positive for Plasmodium falciparum in southern Mozambique. The intervention package successfully reduced vector sporozoite rates in all species throughout the project. IRS was effective in controlling An. funestus s.s. and An. parensis, which virtually disappeared after its first implementation, but less effective at controlling An. arabiensis. Despite suboptimal use, LLINs likely provided significant protection against An. arabiensis and An. merus that sought their host largely indoors when people where in bed. Adding IRS on top of LLINs and MDA likely added value to the control of malaria vectors during the Magude project. Future malaria elimination attempts in the area could benefit from i) increasing the use of LLINs, ii) using longer-lasting IRS products to counteract the increase in vector densities observed towards the end of the high transmission season, and iii) a higher coverage with MDA to reduce the likelihood of human infection. However, additional interventions targeting vectors that survive IRS and LLINs by biting outdoors or indoors before people go to bed, will be likely needed to achieve local malaria elimination.


Assuntos
Piretrinas , Mosquiteiros Tratados com Inseticida , Inseticidas/farmacologia , Malária/prevenção & controle , Malária/epidemiologia , Anopheles , Controle de Mosquitos , Mosquitos Vetores , Moçambique/epidemiologia
5.
PLos ONE ; 17(9)set.09.2022. mapas, graf, ilus
Artigo em Inglês | RSDM, Sec. Est. Saúde SP | ID: biblio-1530817

RESUMO

The "Magude project" aimed but failed to interrupt local malaria transmission in Magude district, southern Mozambique, by using a comprehensive package of interventions, including indoor residual spraying (IRS), pyrethroid-only long-lasting insecticide treated nets (LLINs) and mass-drug administration (MDA). Here we present detailed information on the vector species that sustained malaria transmission, their association with malaria incidence and behaviors, and their amenability to the implemented control interventions. Mosquitoes were collected monthly between May 2015 and October 2017 in six sentinel sites in Magude district, using CDC light traps both indoors and outdoors. Anopheles arabiensis was the main vector during the project, while An. funestus s.s., An. merus, An. parensis and An. squamosus likely played a secondary role. The latter two species have never previously been found positive for Plasmodium falciparum in southern Mozambique. The intervention package successfully reduced vector sporozoite rates in all species throughout the project. IRS was effective in controlling An. funestus s.s. and An. parensis, which virtually disappeared after its first implementation, but less effective at controlling An. arabiensis. Despite suboptimal use, LLINs likely provided significant protection against An. arabiensis and An. merus that sought their host largely indoors when people where in bed. Adding IRS on top of LLINs and MDA likely added value to the control of malaria vectors during the Magude project. Future malaria elimination attempts in the area could benefit from i) increasing the use of LLINs, ii) using longer-lasting IRS products to counteract the increase in vector densities observed towards the end of the high transmission season, and iii) a higher coverage with MDA to reduce the likelihood of human infection. However, additional interventions targeting vectors that survive IRS and LLINs by biting outdoors or indoors before people go to bed, will be likely needed to achieve local malaria elimination.


Assuntos
Humanos , Animais , Mosquitos Vetores , Inseticidas/farmacologia , Malária/prevenção & controle , Malária/epidemiologia , Anopheles , Piretrinas , Controle de Mosquitos , Mosquiteiros Tratados com Inseticida , Moçambique/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA