Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLOS Glob Public Health ; 4(5): e0003224, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38805477

RESUMO

South Africa rolled out dolutegravir (DTG) as first-line antiretroviral therapy (ART) in December 2019 to overcome high rates of pretreatment non-nucleoside reverse transcriptase inhibitor drug resistance. In the context of transition to DTG-based ART, this study spatiotemporally analysed detectable HIV viral loads (VLs) prior to- and following DTG rollout in public-sector healthcare facilities in KwaZulu-Natal (KZN) province, the epicentre of the HIV epidemic in South Africa. We retrospectively curated a HIV VL database using de-identified routine VL data obtained from the National Health Laboratory Service for the period January 2018 to June 2022. We analysed trends in HIV viraemia and mapped median log10 HIV VLs per facility on inverse distance weighted interpolation maps. We used Getis-Ord Gi* hotspot analysis to identify geospatial HIV hotspots. We obtained 7,639,978 HIV VL records from 736 healthcare facilities across KZN, of which 1,031,171 (13.5%) had detectable VLs (i.e., VLs ≥400 copies/millilitre (mL)). Of those with detectable VLs, we observed an overall decrease in HIV VLs between 2018 and 2022 (median 4.093 log10 copies/mL; 95% confidence interval (CI) 4.087-4.100 to median 3.563 log10 copies/mL; CI 3.553-3.572), p<0.01 (median test). The downward trend in proportion of HIV VLs ≥1000 copies/mL over time was accompanied by an inverse upward trend in the proportion of HIV VLs between 400 and 999 copies/mL. Moreover, specific coastal and northern districts of KZN had persistently higher VLs, with emergent hotspots demonstrating spatial clustering of high median log10 HIV VLs. The overall decrease in HIV VLs over time shows good progress towards achieving UNAIDS 95-95-95 targets in KZN, South Africa. The DTG-transition has been associated with a reduction in VLs, however, there is a need for pre-emptive monitoring of low-level viraemia. Furthermore, our findings highlight that specific districts will need intensified HIV care despite DTG rollout.

2.
Zootaxa ; 5138(5): 575-583, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095817

RESUMO

Invertebrates make up the majority of all living species on earth. Nevertheless, our understanding of the global distribution of terrestrial biodiversity and regional patterns therein has thus far been almost entirely based on vertebrate and vascular plant patterns. Here we try to provide some information on the global biogeography of the largest invertebrate order, the beetles (Coleoptera). We compile and analyse a database of beetle distributions, containing presence-absence data for 177 coleopteran families across 827 ecoregions. We map family richness and weighted endemism and find the highest values in the Neotropics and Southeast Asia, but also in the temperate northern hemisphere. Important centres of beetle family endemism include the western and southern parts of North America, Central America, temperate South America, Europe, South, Southeast and East Asia, and eastern Australia. A series of UPGMA cluster analyses were used to produce two global regionalisation maps. As analyses on the complete dataset failed to produce contiguous clusters, two sub-datasets were considered. The first one excluded widespread families and family-poor ecoregions, and the second was restricted to endemic-rich ecoregions. The clusters resulting from the first analysis are partly similar to vertebrate- and plant-based regionalisation schemes, with easily discernible and extensive Holarctic and Holotropical regions, but also include numerous smaller regions, mostly in the temperate parts of the southern Hemisphere (Andean, Patagonian, Matorral, New Guinean, New Caledonian, southern African), with Australia split between a tropical and a temperate/subtropical part. New Zealand is not analysed in this reduced dataset, but clusters with New Caledonia in the endemic-rich analysis, where further interesting subdivisions emerge (mainly in East Asia and western North America). We discuss these patterns in the light of coleopteran dispersal and the habitat requirements predominant across the coleopteran phylogeny, while considering the age of beetle families.


Assuntos
Biodiversidade , Plantas , Animais , Ecossistema , Filogenia , Vertebrados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA