Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 66(6): 634-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20151406

RESUMO

BACKGROUND: Pine wilt disease (PWD) is very complex and has been reported to be caused by pine wood nematode, Bursaphelenchus xylophilus (Steiner & Buhrer) Nickle, and its accompanying bacteria. However, there is no report on the control of PWD by antibacterial agent. The present study was performed to investigate disease control efficacy of antibacterial agents against PWD. RESULTS: Among six antibacterial antibiotics tested, oxolinic acid (OA) showed the strongest antibacterial activity against five bacteria isolated from three strains of pine wood nematode. In in vivo assay, it effectively suppressed the development of PWD in three-year-old seedlings of Pinus densiflora Sieb. & Zucc.; it showed 71% control when injected at 3 mg per seedling. A mixture of OA and the nematicidal agent abamectin (Ab) showed higher disease control efficacy against PWD than either OA or Ab alone. In addition, OA alone and a mixture of OA and Ab also controlled PWD in approximately 20-year-old pine trees under field conditions. CONCLUSION: This is the first report on the suppression of PWD by OA. The result strongly indicates that PWD could be controlled by antibacterial antibiotic alone and a combination of antibacterial and nematicidal agents.


Assuntos
Antibacterianos/farmacologia , Ácido Oxolínico/farmacologia , Pinus/microbiologia , Doenças das Plantas/microbiologia , Animais , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Tylenchida/efeitos dos fármacos , Tylenchida/microbiologia
2.
PLoS One ; 4(11): e7593, 2009 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-19907651

RESUMO

The pinewood nematode (PWN), Bursaphelenchus xylophilus, is a mycophagous and phytophagous pathogen responsible for the current widespread epidemic of the pine wilt disease, which has become a major threat to pine forests throughout the world. Despite the availability of several preventive trunk-injection agents, no therapeutic trunk-injection agent for eradication of PWN currently exists. In the characterization of basic physiological properties of B. xylophilus YB-1 isolates, we established a high-throughput screening (HTS) method that identifies potential hits within approximately 7 h. Using this HTS method, we screened 206 compounds with known activities, mostly antifungal, for antinematodal activities and identified HWY-4213 (1-n-undecyl-2-[2-fluorphenyl] methyl-3,4-dihydro-6,7-dimethoxy-isoquinolinium chloride), a highly water-soluble protoberberine derivative, as a potent nematicidal and antifungal agent. When tested on 4 year-old pinewood seedlings that were infected with YB-1 isolates, HWY-4213 exhibited a potent therapeutic nematicidal activity. Further tests of screening 39 Caenorhabditis elegans mutants deficient in channel proteins and B. xylophilus sensitivity to Ca(2+) channel blockers suggested that HWY-4213 targets the calcium channel proteins. Our study marks a technical breakthrough by developing a novel HTS method that leads to the discovery HWY-4213 as a dual-acting antinematodal and antifungal compound.


Assuntos
Antinematódeos/farmacologia , Nematoides/metabolismo , Pinus/metabolismo , Doenças das Plantas/terapia , Animais , Antifúngicos/farmacologia , Antinematódeos/síntese química , Caenorhabditis elegans/genética , Bloqueadores dos Canais de Cálcio/síntese química , Bloqueadores dos Canais de Cálcio/farmacologia , Química Farmacêutica/métodos , Cruzamentos Genéticos , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Técnicas Genéticas , Pinus/parasitologia , Fatores de Tempo , Árvores
3.
J Nematol ; 39(1): 31-6, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19259472

RESUMO

The nematicidal activity of two cassia, Cinnamomum cassia, oils (Especial and true), four cinnamon, Cinnamomum zey-lanicum, oils (technical, #500, bark and green leaf), and their compounds (e.g., trans-cinnamaldehyde and trans-cinnamic acid) toward adult Bursaphelenchus xylophilus was examined by a direct contact bioassay. Results were compared with those of 34 related compounds. As judged by 24-hour LC(50) values, two cassia oils (0.084-0.085 mg/ml) and four cinnamon oils (0.064-0.113 mg/ml) were toxic toward adult B. xylophilus. Of 45 test compounds, trans-cinnamaldehyde (0.061 mg/ml) was the most active nematicide, followed by ethyl cinnamate, alpha-methyl-trans-cinnamaldehyde, methyl cinnamate and allyl cinnamate (0.114-0.195 mg/ml). Potent nematicidal activity was also observed with 4-methoxycinnamonitrile, trans-4-methoxycinnamaldehyde, trans-2-methoxy-cinnamaldehyde, ethyl alpha-cyanocinnamate, cinnamonitrile and cinnamyl bromide (0.224-0.502 mg/ml). Structure-activity relationships indicate that structural characteristics, such as types of functional groups, saturation and carbon skeleton, appear to play a role in determining the toxicities to adult B. xylophilus. Cassia and cinnamon oils and test compounds described merit further study as potential nematicides or leads for the control of pine wilt disease caused by B. xylophilus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA