Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(6): e16723, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37484259

RESUMO

The unique metagenomic, metaviromic libraries and indigenous micro diversity within Southern Africa have the potential for global beneficiation in academia and industry. Microorganisms that flourish at high temperatures, adverse pH conditions, and high salinity are likely to have enzyme systems that function efficiently under those conditions. These attributes afford researchers and industries alternative approaches that could replace existing chemical processes. Thus, a better understanding of African microbial/genetic diversity is crucial for the development of "greener" industries. A concerted drive to exploit the potential locked in biological resources has been previously seen with companies such as Diversa Incorporated and Verenium (Badische Anilin-und SodaFabrik-BASF) both building business models that pioneered the production of high-performance specialty enzymes for a variety of different industrial applications. The market potential and accompanying industry offerings have not been fully exploited in South Africa, nor in Africa at large. Utilization of the continent's indigenous microbial repositories could create long-lasting, sustainable growth in various production sectors, providing economic growth in resource-poor regions. By bolstering local manufacture of high-value bio-based products, scientific and engineering discoveries have the potential to generate new industries which in turn would provide employment avenues for many skilled and unskilled laborers. The positive implications of this could play a role in altering the face of business markets on the continent from costly import-driven markets to income-generating export markets. This review focuses on identifying microbially diverse areas located in South Africa while providing a profile for all associated microbial/genetically derived libraries in this country. A comprehensive list of all the relevant researchers and potential key players is presented, mapping out existing research networks for the facilitation of collaboration. The overall aim of this review is to facilitate a coordinated journey of exploration, one which will hopefully realize the value that South Africa's microbial diversity has to offer.

2.
Biotechnol Rep (Amst) ; 29: e00575, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33659192

RESUMO

Probiotics can be effective alternatives to the prophylactic use of antibiotic growth promoters (AGPs) in response to industry and consumer concerns around their use in poultry. Studies on the suitability of Bacillus probiotics are emerging and showing benefits, but information on the production technology is limited. We developed the production process for a novel probiotic product previously shown to be effective in field trials. All strains were cultivated to a spore concentration exceeding 1 × 1010 CFU. mL-1. The spores of each strain were harvested, processed into a powder intermediate and formulated into an end product with 100 % recoveries and a shelf life stability >1 year. The probiotic was shown to be incorporated into broiler feed exceeding the desired concentration of 1 × 106 CFU. g-1. Using efficient process technology and lower cost materials, this study presents a commercially relevant case for the potential adoption of probiotic products by the poultry industry.

3.
J Gen Appl Microbiol ; 66(4): 228-238, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32536637

RESUMO

Bacillus based probiotics are becoming relevant as alternatives to antibiotics used in poultry production and in other animal husbandry. This study describes the isolation of 48 Bacillus spp. candidates, from chickens and chicken environments, for use as potential probiotics in poultry production. These isolates, plus a further 18, were tested in a comprehensive in vitro screening regime that was specifically designed to select the best isolates that satisfied multiple modes of action desirable for commercial poultry probiotics. This screening programme involved the evaluation of the ability of the isolates to survive and grow in the limiting conditions of the chicken gastrointestinal tract. Only 11 of the isolates fulfilled these criteria; hence, they were further evaluated for the ability to adhere to epithelial cells, produce extracellular enzymes, and to demonstrate antagonistic activity against selected pathogens of significant importance in poultry production. Of these, a total of 6 isolates were selected, due to their all-round probiotic capability. Identification by 16S RNA sequencing confirmed these isolates as B. subtilis and B. velezensis, identities which are generally regarded as safe. The Bacillus isolates reported in our study exhibit strong all-inclusive probiotic effects and can potentially be formulated as a probiotic preparation for poultry production.


Assuntos
Bacillus subtilis/isolamento & purificação , Bacillus subtilis/fisiologia , Bacillus/isolamento & purificação , Bacillus/fisiologia , Galinhas/microbiologia , Probióticos , Ração Animal/microbiologia , Animais , Bacillus/classificação , Bacillus subtilis/classificação , DNA Bacteriano/genética , Suplementos Nutricionais/microbiologia , Trato Gastrointestinal/microbiologia , Aves Domésticas , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
4.
Poult Sci ; 99(1): 331-341, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32416818

RESUMO

There is a necessity for the implementation of in-feed probiotics in the poultry production industry, following strict regulations around the use of antibiotic growth promoters (AGP). Bacillus spp. are becoming an attractive alternative because of their functionality and stability. This study aims to evaluate the effect of a novel multi-strain Bacillus based probiotic on growth performance and gut health in male Ross 308 broiler chickens challenged with Clostridium perfringens Type A. Broilers on a 4 phase feeding program were fed diets containing either a standard metabolizable energy (ME) (100%) or a reduced ME (98%) level. The test probiotic was compared to an un-supplemented negative control and a commercial benchmark product as positive control over a 35 D feeding trial, using a 2 × 3 factorial experimental design. Chicks were inoculated with a once-off dose of C. perfringens on day 14. Growth performance was measured weekly to calculate body weight (BW), feed intake (FI) and feed conversion ratio (FCR). Villi histomorphology, gut lesions, and liver weight were assessed at day 35. Broilers fed the reduced ME diet with the test probiotic achieved higher final BWs (P = 0.037) and FCR (P = 0.014) than the negative control. Broilers fed the standard ME diet with the test probiotic showed improved (P = 0.001) FCR than the negative control from day 21 onwards. Increased duodenal villi height (P = 0.012) and villi height to crypt depth ratio in the duodenum (P < 0.0001) and jejunum (P = 0.0004) were observed in broilers fed the reduced ME diet containing the test probiotic. Additionally, the test probiotic resulted in significantly reduced relative liver weights in both ME groups. Consequently, the results suggest that the novel multi-strain Bacillus based probiotic enhanced broiler performance and improved gut health and is thus attractive as an alternative to AGP's in broiler production.


Assuntos
Bacillus , Galinhas/fisiologia , Probióticos/administração & dosagem , Fenômenos Fisiológicos da Nutrição Animal , Animais , Peso Corporal , Galinhas/crescimento & desenvolvimento , Infecções por Clostridium/veterinária , Clostridium perfringens , Dieta/veterinária , Trato Gastrointestinal/anatomia & histologia , Trato Gastrointestinal/fisiologia , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA