Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
ACS Catal ; 14(19): 14622-14638, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39386920

RESUMO

The ability of enzymes to hydrolyze the ubiquitous polyester, poly(ethylene terephthalate) (PET), has enabled the potential for bioindustrial recycling of this waste plastic. To date, many of these PET hydrolases have been engineered for improved catalytic activity and stability, but current screening methods have limitations in screening large libraries, including under high-temperature conditions. Here, we developed a platform that can simultaneously interrogate PET hydrolase libraries of 104-105 variants (per round) for protein solubility, thermostability, and activity via paired, plate-based split green fluorescent protein and model substrate screens. We then applied this platform to improve the performance of a benchmark PET hydrolase, leaf-branch compost cutinase, by directed evolution. Our engineered enzyme exhibited higher catalytic activity relative to the benchmark, LCC-ICCG, on amorphous PET film coupon substrates (∼9.4% crystallinity) in pH-controlled bioreactors at both 65 °C (8.5% higher conversion at 48 h and 38% higher maximum rate, at 2.9% substrate loading) and 68 °C (11.2% higher conversion at 48 h and 43% higher maximum rate, at 16.5% substrate loading), up to 48 h, highlighting the potential of this screening platform to accelerate enzyme development for PET recycling.

2.
Heart Rhythm ; 21(11): 2364-2365, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39482038
3.
Front Bioinform ; 4: 1328714, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966162

RESUMO

Bioinformatics, the interdisciplinary field that combines biology, computer science, and data analysis, plays a pivotal role in advancing our understanding of life sciences. In the African context, where the diversity of biological resources and healthcare challenges is substantial, fostering bioinformatics literacy and proficiency among students is important. This perspective provides an overview of the state of bioinformatics literacy among African students, highlighting the significance, challenges, and potential solutions in addressing this critical educational gap. It proposes various strategies to enhance bioinformatics literacy among African students. These include expanding educational resources, fostering collaboration between institutions, and engaging students in research projects. By addressing the current challenges and implementing comprehensive strategies, African students can harness the power of bioinformatics to contribute to innovative solutions in healthcare, agriculture, and biodiversity conservation, ultimately advancing the continent's scientific capabilities and improving the quality of life for her people. In conclusion, promoting bioinformatics literacy among African students is imperative for the continent's scientific development and advancing frontiers of biological research.

4.
Hum Gene Ther ; 34(19-20): 1049-1063, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37578141

RESUMO

Autosomal dominant Alzheimer's disease (ADAD) is a rare early-onset form of Alzheimer's disease, caused by dominant mutations in one of three genes: presenilin 1, presenilin 2, and amyloid ß precursor protein (APP). Mutations in the presenilin 1 gene (PSEN1) account for the majority of cases, and individuals who inherit a single-mutant PSEN1 allele go on to develop early-onset dementia, ultimately leading to death. The presenilin 1 protein (PS1) is the catalytic subunit of the γ-secretase protease, a tetrameric protease responsible for cleavage of numerous transmembrane proteins, including Notch and the APP. Inclusion of a mutant PS1 subunit in the γ-secretase complex leads to a loss of enzyme function and a preferential reduction of shorter forms of Aß peptides over longer forms, an established biomarker of ADAD progression in human patients. In this study, we describe the development of a gene therapy vector expressing a wild-type (WT) copy of human PSEN1 to ameliorate the loss of function associated with PSEN1 mutations. We have carried out studies in mouse models using a recombinant AAV9 vector to deliver the PSEN1 gene directly into the central nervous system (CNS) and shown that we can normalize γ-secretase function and slow neurodegeneration in both PSEN1 conditional knockout and PSEN1 mutant knockin models. We have also carried out biodistribution studies in nonhuman primates (NHPs) and demonstrated the ability to achieve broad PS1 protein expression throughout the cortex and the hippocampus, two regions known to be critically involved in ADAD progression. These studies demonstrate preclinical proof of concept that expression of a WT human PSEN1 gene in cells harboring a dominant PSEN1 mutation can correct the γ-secretase dysfunction. In addition, direct administration of the recombinant AAV9 into the NHP brain can achieve broad expression at levels predicted to provide efficacy in the clinic.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Distribuição Tecidual , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Mutação , Terapia Genética
5.
J Cardiovasc Electrophysiol ; 34(9): 1859-1868, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37526234

RESUMO

INTRODUCTION: Sinus node location, function, and atrial activation are often abnormal in patients with congenital heart disease (CHD), due to anatomical, surgical, and acquired factors. We aimed to perform noninvasive electrocardiographic imaging (ECGI) of the intrinsic atrial pacemaker and atrial activation in patients with surgically repaired or palliated CHD, compared with control patients with structurally normal hearts. METHODS AND RESULTS: Atrial ECGI was performed in eight CHD patients with prespecified diagnoses (Fontan circulation, dextro transposition of the great arteries post Mustard/Senning, tetralogy of Fallot), and three controls. Activation and propagation maps were constructed in presenting rhythm. Wavefront propagation was analyzed to identify (1) intrinsic atrial pacemaker breakout site, (2) morphological right atrial (RA) activation pattern, (3) morphological left atrial (LA) breakout sites (i.e., interatrial connections), (4) LA activation pattern, and (5) putative lines of block. Physiologically appropriate atrial activation and propagation maps were able to be constructed. In the majority of patients, atrial breakouts were in keeping with the sinus node, observed in a crescent-shaped distribution from the anterior superior vena cava to the posterior RA. Ectopic atrial pacemaker sites were demonstrated in the atriopulmonary (AP) Fontan patient (very diffuse posterolateral RA) and Mustard patient (very posterior RA competing with a low RA focus). RA propagation was laminar in controls, but suggested either a line of block or conduction slowing consistent with an atriotomy scar in the tetralogy of Fallot (TOF) patients. Putative lines of block were more complex and RA propagation more abnormal in the atrial switch and AP Fontan patients, compared with the TOF patients. RA activation in the extracardiac Fontan patients was relatively laminar. Earliest LA breakout was most commonly observed in the region of Bachmann's Bundle in both controls and CHD patients, except for posterior LA breakouts in two patients. LA activation was typically more homogeneous than RA activation in CHD patients. CONCLUSION: ECGI can be utilized to create a noninvasive mapping model of atrial activation in postsurgical CHD, demonstrating atrial pacemaker location, putative lines of block and interatrial connections. Once validated invasively, this may have clinical implications in predicting risk of sinus node dysfunction and atrial arrhythmias, or in guiding catheter ablation.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Cardiopatias Congênitas , Tetralogia de Fallot , Transposição dos Grandes Vasos , Humanos , Fibrilação Atrial/cirurgia , Tetralogia de Fallot/cirurgia , Veia Cava Superior , Transposição dos Grandes Vasos/cirurgia , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/cirurgia , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/cirurgia , Eletrocardiografia , Ablação por Cateter/efeitos adversos
6.
Genetics ; 224(4)2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37348055

RESUMO

Exonic variants present some of the strongest links between genotype and phenotype. However, these variants can have significant inter-individual pathogenicity differences, known as variable penetrance. In this study, we propose a model where genetically controlled mRNA splicing modulates the pathogenicity of exonic variants. By first cataloging exonic inclusion from RNA-sequencing data in GTEx V8, we find that pathogenic alleles are depleted on highly included exons. Using a large-scale phased whole genome sequencing data from the TOPMed consortium, we observe that this effect may be driven by common splice-regulatory genetic variants, and that natural selection acts on haplotype configurations that reduce the transcript inclusion of putatively pathogenic variants, especially when limiting to haploinsufficient genes. Finally, we test if this effect may be relevant for autism risk using families from the Simons Simplex Collection, but find that splicing of pathogenic alleles has a penetrance reducing effect here as well. Overall, our results indicate that common splice-regulatory variants may play a role in reducing the damaging effects of rare exonic variants.


Assuntos
Sítios de Splice de RNA , Splicing de RNA , Penetrância , Éxons , Genótipo , RNA Mensageiro/genética , Processamento Alternativo
7.
Molecules ; 28(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37110623

RESUMO

Large molecule protein therapeutics have steadily grown and now represent a significant portion of the overall pharmaceutical market. These complex therapies are commonly manufactured using cell culture technology. Sequence variants (SVs) are undesired minor variants that may arise from the cell culture biomanufacturing process that can potentially affect the safety and efficacy of a protein therapeutic. SVs have unintended amino acid substitutions and can come from genetic mutations or translation errors. These SVs can either be detected using genetic screening methods or by mass spectrometry (MS). Recent advances in Next-generation Sequencing (NGS) technology have made genetic testing cheaper, faster, and more convenient compared to time-consuming low-resolution tandem MS and Mascot Error Tolerant Search (ETS)-based workflows which often require ~6 to 8 weeks data turnaround time. However, NGS still cannot detect non-genetic derived SVs while MS analysis can do both. Here, we report a highly efficient Sequence Variant Analysis (SVA) workflow using high-resolution MS and tandem mass spectrometry combined with improved software to greatly reduce the time and resource cost associated with MS SVA workflows. Method development was performed to optimize the high-resolution tandem MS and software score cutoff for both SV identification and quantitation. We discovered that a feature of the Fusion Lumos caused significant relative under-quantitation of low-level peptides and turned it off. A comparison of common Orbitrap platforms showed that similar quantitation values were obtained on a spiked-in sample. With this new workflow, the amount of false positive SVs was decreased by up to 93%, and SVA turnaround time by LC-MS/MS was shortened to 2 weeks, comparable to NGS analysis speed and making LC-MS/MS the top choice for SVA workflow.


Assuntos
Software , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Fluxo de Trabalho , Cromatografia Líquida/métodos , Sequenciamento de Nucleotídeos em Larga Escala
8.
J Arrhythm ; 39(1): 27-33, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36733330

RESUMO

Background: To mitigate the risk of dyssynchrony-induced cardiomyopathy, international guidelines advocate His bundle pacing (HBP) with a ventricular backup lead prior to atrioventricular node ablation in treatment-refractory atrial fibrillation and normal left ventricular ejection fraction. As a result of concerns with long-term pacing parameters associated with HBP, this case series reports an adopted strategy of HBP combined with deep septal left bundle branch area pacing (dsLBBAP) in this patient cohort, enabling intrapatient comparison of the two pacing methods. Methods and Results: Eight patients aged 72 ± 10 years (left ventricular ejection fraction 53 ± 4%) underwent successful combined HBP and dsLBBAP implant prior to AV node ablation. Intrinsic QRS duration was 118 ± 46 ms. When compared to dsLBBAP, HBP had lower sensed ventricular amplitude (2.4 ± 1.1 vs. 15 ± 5.3 V, p = .001) and lower lead impedance (522 ± 57 vs. 814 ± 171ohms, p = .02), but shorter paced QRS duration (101 ± 20 vs. 119 ± 17 ms, p = .02). HBP pacing threshold was 1.0 ± 0.6 V at 1 ms pulse width, and dsLBBAP pacing threshold was 0.5 ± 0.2 V at 0.4 ms pulse width. Five patients underwent cardiac CT showing adequate dsLBBAP ventricular septal penetration (8.6 ± 1.3 mm depth, 2.4 ± 0.5 mm distance from left ventricular septal wall). No complications occurred during a mean follow-up duration of 121 ± 92 days. Conclusions: Combined HBP and dsLBBAP pacing is a feasible approach as a pace and ablate strategy for atrial fibrillation refractory to medical therapy.

9.
J Am Soc Mass Spectrom ; 34(3): 484-492, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36802331

RESUMO

New peak detection (NPD), as part of the LC-MS-based multi-attribute method (MAM), allows for sensitive and unbiased detection of new or changing site-specific attributes between a sample and reference that is not possible with conventional UV or fluorescence detection-based methods. MAM with NPD can serve as a purity test that can establish whether a sample and the reference are similar. The broad implementation of NPD in the biopharmaceutical industry has been limited by the potential presence of false positives or artifacts, which increase the analysis time and can trigger unnecessary investigations of product quality. Our novel contributions to the success of NPD are the curation of false positives, use of the known peak list concept, pairwise analysis approach, and the development of a NPD system suitability control strategy. In this report, we also introduce a unique experimental design utilizing sequence variant co-mixes to measure NPD performance. We show that NPD has superior performance relative to conventional control system methods in the detection of an unexpected change as compared with the reference. NPD is a new frontier in purity testing that reduces subjectivity, need for analyst intervention, and potential for missing unexpected product quality changes.


Assuntos
Produtos Biológicos , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos
10.
Europace ; 25(2): 417-424, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36305561

RESUMO

AIMS: Radiofrequency (RF) ablation for pulmonary vein isolation (PVI) in atrial fibrillation (AF) is associated with the risk of oesophageal thermal injury (ETI). Higher power short duration (HPSD) ablation results in preferential local resistive heating over distal conductive heating. Although HPSD has become increasingly common, no randomized study has compared ETI risk with conventional lower power longer duration (LPLD) ablation. This study aims to compare HPSD vs. LPLD ablation on ETI risk. METHODS AND RESULTS: Eighty-eight patients were randomized 1:1 to HPSD or LPLD posterior wall (PW) ablation. Posterior wall ablation was 40 W (HPSD group) or 25 W (LPLD group), with target AI (ablation index) 400/LSI (lesion size index) 4. Anterior wall ablation was 40-50 W, with a target AI 500-550/LSI 5-5.5. Endoscopy was performed on Day 1. The primary endpoint was ETI incidence. The mean age was 61 ± 9 years (31% females). The incidence of ETI (superficial ulcers n = 4) was 4.5%, with equal occurrence in HPSD and LPLD (P = 1.0). There was no difference in the median value of maximal oesophageal temperature (HPSD 38.6°C vs. LPLD 38.7°C, P = 0.43), or the median number of lesions per patient with temperature rise above 39°C (HPSD 1.5 vs. LPLD 2, P = 0.93). Radiofrequency ablation time (23.8 vs. 29.7 min, P < 0.01), PVI duration (46.5 vs. 59 min, P = 0.01), and procedure duration (133 vs. 150 min, P = 0.05) were reduced in HPSD. After a median follow-up of 12 months, AF recurrence was lower in HPSD (15.9% vs. LPLD 34.1%; hazard ratio 0.42, log-rank P = 0.04). CONCLUSION: Higher power short duration ablation was associated with similarly low rates of ETI and shorter total/PVI RF ablation times when compared with LPLD ablation. Higher power short duration ablation is a safe and efficacious approach to PVI.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Veias Pulmonares , Ablação por Radiofrequência , Feminino , Humanos , Pessoa de Meia-Idade , Idoso , Masculino , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Temperatura Alta , Estudos Prospectivos , Veias Pulmonares/cirurgia , Ablação por Cateter/efeitos adversos , Resultado do Tratamento , Recidiva
11.
Cities Health ; 7(6): 964-972, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38234465

RESUMO

"What does livability mean to us? Creating communities that care." This reflective praxis think-piece was a collective effort by graduates of the Livability Academy program, a community leadership program hosted in eastern North Philadelphia. Program participants worked in teams to implement programs to improve neighborhood quality of life, as those involved in implementing Livability Academy collaborated to strengthen the bottom-up, asset-based, network-driven model. Our reflections on successes and areas for improvement can strengthen future cohorts of Livability Academy and keep us connected to continue making our neighborhoods more livable.

13.
Eur Heart J ; 43(22): 2103-2115, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35302168

RESUMO

Sudden cardiac death (SCD) accounts for up to 25% of deaths in patients with congenital heart disease (CHD). To date, research has largely been driven by observational studies and real-world experience. Drawbacks include varying definitions, incomplete taxonomy that considers SCD as a unitary diagnosis as opposed to a terminal event with diverse causes, inconsistent outcome ascertainment, and limited data granularity. Notwithstanding these constraints, identified higher-risk substrates include tetralogy of Fallot, transposition of the great arteries, cyanotic heart disease, Ebstein anomaly, and Fontan circulation. Without autopsies, it is often impossible to distinguish SCD from non-cardiac sudden deaths. Asystole and pulseless electrical activity account for a high proportion of SCDs, particularly in patients with heart failure. High-quality cardiopulmonary resuscitation is essential to improve outcomes. Pulmonary hypertension and CHD complexity are associated with lower likelihood of successful resuscitation. Risk stratification for primary prevention implantable cardioverter-defibrillators (ICDs) should consider the probability of SCD due to a shockable rhythm, competing causes of mortality, complications of ICD therapy, and associated costs. Risk scores to better estimate probabilities of SCD and CHD-specific guidelines and consensus-based recommendations have been proposed. The subcutaneous ICD has emerged as an attractive alternative to transvenous systems in those with vascular access limitations, prior device infections, intra-cardiac shunts, or a Fontan circulation. Further improving SCD-related outcomes will require a multidimensional approach to research that addresses disease processes and triggers, taxonomy to better reflect underlying pathophysiology, high-risk features, early warning signs, access to high-quality cardiopulmonary resuscitation and specialized care, and preventive therapies tailored to underlying mechanisms.


Assuntos
Desfibriladores Implantáveis , Técnica de Fontan , Parada Cardíaca , Cardiopatias Congênitas , Transposição dos Grandes Vasos , Morte Súbita Cardíaca/epidemiologia , Morte Súbita Cardíaca/etiologia , Morte Súbita Cardíaca/prevenção & controle , Desfibriladores Implantáveis/efeitos adversos , Técnica de Fontan/efeitos adversos , Cardiopatias Congênitas/terapia , Humanos , Fatores de Risco
14.
Hum Mutat ; 43(8): 986-997, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34816521

RESUMO

The Ensembl Variant Effect Predictor (VEP) is a freely available, open-source tool for the annotation and filtering of genomic variants. It predicts variant molecular consequences using the Ensembl/GENCODE or RefSeq gene sets. It also reports phenotype associations from databases such as ClinVar, allele frequencies from studies including gnomAD, and predictions of deleteriousness from tools such as Sorting Intolerant From Tolerant and Combined Annotation Dependent Depletion. Ensembl VEP includes filtering options to customize variant prioritization. It is well supported and updated roughly quarterly to incorporate the latest gene, variant, and phenotype association information. Ensembl VEP analysis can be performed using a highly configurable, extensible command-line tool, a Representational State Transfer application programming interface, and a user-friendly web interface. These access methods are designed to suit different levels of bioinformatics experience and meet different needs in terms of data size, visualization, and flexibility. In this tutorial, we will describe performing variant annotation using the Ensembl VEP web tool, which enables sophisticated analysis through a simple interface.


Assuntos
Genômica , Software , Biologia Computacional , Bases de Dados Genéticas , Frequência do Gene , Humanos , Anotação de Sequência Molecular , Fenótipo
15.
Nucleic Acids Res ; 50(D1): D765-D770, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34634797

RESUMO

The COVID-19 pandemic has seen unprecedented use of SARS-CoV-2 genome sequencing for epidemiological tracking and identification of emerging variants. Understanding the potential impact of these variants on the infectivity of the virus and the efficacy of emerging therapeutics and vaccines has become a cornerstone of the fight against the disease. To support the maximal use of genomic information for SARS-CoV-2 research, we launched the Ensembl COVID-19 browser; the first virus to be encompassed within the Ensembl platform. This resource incorporates a new Ensembl gene set, multiple variant sets, and annotation from several relevant resources aligned to the reference SARS-CoV-2 assembly. Since the first release in May 2020, the content has been regularly updated using our new rapid release workflow, and tools such as the Ensembl Variant Effect Predictor have been integrated. The Ensembl COVID-19 browser is freely available at https://covid-19.ensembl.org.


Assuntos
COVID-19/virologia , Bases de Dados Genéticas , SARS-CoV-2/genética , Navegador , Coronaviridae/genética , Variação Genética , Genoma Viral , Humanos , Anotação de Sequência Molecular
16.
Nucleic Acids Res ; 50(D1): D996-D1003, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34791415

RESUMO

Ensembl Genomes (https://www.ensemblgenomes.org) provides access to non-vertebrate genomes and analysis complementing vertebrate resources developed by the Ensembl project (https://www.ensembl.org). The two resources collectively present genome annotation through a consistent set of interfaces spanning the tree of life presenting genome sequence, annotation, variation, transcriptomic data and comparative analysis. Here, we present our largest increase in plant, metazoan and fungal genomes since the project's inception creating one of the world's most comprehensive genomic resources and describe our efforts to reduce genome redundancy in our Bacteria portal. We detail our new efforts in gene annotation, our emerging support for pangenome analysis, our efforts to accelerate data dissemination through the Ensembl Rapid Release resource and our new AlphaFold visualization. Finally, we present details of our future plans including updates on our integration with Ensembl, and how we plan to improve our support for the microbial research community. Software and data are made available without restriction via our website, online tools platform and programmatic interfaces (available under an Apache 2.0 license). Data updates are synchronised with Ensembl's release cycle.


Assuntos
Bases de Dados Genéticas , Genômica , Internet , Software , Animais , Biologia Computacional , Genoma Bacteriano/genética , Genoma Fúngico/genética , Genoma de Planta/genética , Plantas/classificação , Plantas/genética , Vertebrados/classificação , Vertebrados/genética
17.
J Pharm Biomed Anal ; 205: 114330, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34479173

RESUMO

Multi-attribute method (MAM) using peptide map analysis with high resolution mass spectrometry is increasingly common in product characterization and the identification of critical quality attributes (CQAs) of biotherapeutic proteins. Capable of providing structural information specific to amino acid residues, quantifying relative abundance of product variants or degradants, and detecting profile changes between product lots, a robust MAM can replace multiple traditional methods that generate profile-based information for product release and stability testing. In an effort to provide informative and efficient analytical monitoring for monoclonal antibody (mAb) products, from early development to manufacturing quality control, we describe the desired MAM performance profile and address the major scientific challenges in MAM method validation. Furthermore, to support fast speed investigational product development, we describe a platform method validation strategy and results of an optimized MAM workflow. This strategy is applied to support the use of MAM for multiple mAb products with similar structures and physicochemical properties, requiring minimal product-specific method validation activities. Three mAb products were used to demonstrate MAM performance for common and representative product quality attributes. Method validation design and acceptance criteria were guided by the Analytical Target Profile concept, as well as relevant regulatory guidelines to ensure the method is fit-for-purpose. A comprehensive system suitability control strategy was developed, and reported here, to ensure adequate performance of the method including sample preparation, instrument operation, and data analysis. Our results demonstrated sufficient method performance for the characteristics required for quantitative measurement of product variants and degradants.


Assuntos
Anticorpos Monoclonais , Antineoplásicos Imunológicos , Aminoácidos , Controle de Qualidade , Projetos de Pesquisa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA