Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genome Biol Evol ; 12(2): 3926-3937, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31922581

RESUMO

Loss of photosynthesis is a recurring theme in eukaryotic evolution. In organisms that have lost the ability to photosynthesize, nonphotosynthetic plastids are retained because they play essential roles in processes other than photosynthesis. The unicellular algal genus Cryptomonas contains both photosynthetic and nonphotosynthetic members, the latter having lost the ability to photosynthesize on at least three separate occasions. To elucidate the evolutionary processes underlying the loss of photosynthesis, we sequenced the plastid genomes of two nonphotosynthetic strains, Cryptomonas sp. CCAC1634B and SAG977-2f, as well as the genome of the phototroph Cryptomonas curvata CCAP979/52. These three genome sequences were compared with the previously sequenced plastid genome of the nonphotosynthetic species Cryptomonas paramecium CCAP977/2a as well as photosynthetic members of the Cryptomonadales, including C. curvata FBCC300012D. Intraspecies comparison between the two C. curvata strains showed that although their genome structures are stable, the substitution rates of their genes are relatively high. Although most photosynthesis-related genes, such as the psa and psb gene families, were found to have disappeared from the nonphotosynthetic strains, at least ten pseudogenes are retained in SAG977-2f. Although gene order is roughly shared among the plastid genomes of photosynthetic Cryptomonadales, genome rearrangements are seen more frequently in the smaller genomes of the nonphotosynthetic strains. Intriguingly, the light-independent protochlorophyllide reductase comprising chlB, L, and N is retained in nonphotosynthetic SAG977-2f and CCAC1634B. On the other hand, whereas CCAP977/2a retains ribulose-1,5-bisphosphate carboxylase/oxygenase-related genes, including rbcL, rbcS, and cbbX, the plastid genomes of the other two nonphotosynthetic strains have lost the ribulose-1,5-bisphosphate carboxylase/oxygenase protein-coding genes.


Assuntos
Criptófitas/genética , Plastídeos/genética , Genomas de Plastídeos/genética , Genômica/métodos , Fotossíntese/genética , Fotossíntese/fisiologia , Filogenia
2.
Genome Biol Evol ; 9(7): 1859-1872, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28854597

RESUMO

Cryptophytes are an ecologically important group of largely photosynthetic unicellular eukaryotes. This lineage is of great interest to evolutionary biologists because their plastids are of red algal secondary endosymbiotic origin and the host cell retains four different genomes (host nuclear, mitochondrial, plastid, and red algal nucleomorph). Here, we report a comparative analysis of plastid genomes from six representative cryptophyte genera. Four newly sequenced cryptophyte plastid genomes of Chroomonas mesostigmatica, Ch. placoidea, Cryptomonas curvata, and Storeatula sp. CCMP1868 share a number of features including synteny and gene content with the previously sequenced genomes of Cryptomonas paramecium, Rhodomonas salina, Teleaulax amphioxeia, and Guillardia theta. Our analysis of these plastid genomes reveals examples of gene loss and intron insertion. In particular, the chlB/chlL/chlN genes, which encode light-independent (dark active) protochlorophyllide oxidoreductase (LIPOR) proteins have undergone recent gene loss and pseudogenization in cryptophytes. Comparison of phylogenetic trees based on plastid and nuclear genome data sets show the introduction, via secondary endosymbiosis, of a red algal derived plastid in a lineage of chlorophyll-c containing algae. This event was followed by additional rounds of eukaryotic endosymbioses that spread the red lineage plastid to diverse groups such as haptophytes and stramenopiles.


Assuntos
Criptófitas/genética , Evolução Molecular , Genomas de Plastídeos , Plastídeos/genética , Simbiose , Criptófitas/fisiologia , Filogenia , Análise de Sequência de DNA/métodos
3.
Mol Biol Evol ; 31(3): 625-35, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24336878

RESUMO

Reductive genome evolution is seen in organisms living in close association with each other, such as in endosymbiosis, symbiosis, and parasitism. The reduced genomes of endosymbionts and parasites often exhibit similar features such as high gene densities and A+T compositional bias. Little is known about how the regulation of gene expression has been affected in organisms with highly compacted genomes. We studied gene transcription patterns in "nucleomorph" genomes, which are relic nuclear genomes of algal endosymbionts found in cryptophytes and chlorarachniophytes. We examined nuclear and nucleomorph gene transcription patterns using RNA-Seq transcriptome and genome mapping analyses in representatives of both lineages. In all four examined genomes, the most highly transcribed nucleomorph gene category was found to be plastid-associated genes. Remarkably, only 0.49-3.37% of the nucleomorph genomes of these organisms did not have any mRNA counterpart in our RNA-Seq data sets, and nucleomorph genes show equal or higher levels of transcription than their counterparts in the nuclear genomes. We hypothesize that elevated levels of nucleomorph gene transcription may serve to counteract the degradation or modification of protein function due to the loss of interacting proteins in the nucleomorph and nucleomorph-associated subcellular compartments.


Assuntos
Núcleo Celular/genética , Criptófitas/genética , Eucariotos/genética , Regulação da Expressão Gênica , Tamanho do Genoma/genética , Transcrição Gênica , Simbiose/genética
4.
Genome Biol Evol ; 4(11): 1162-75, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23042551

RESUMO

Cryptophytes are a diverse lineage of marine and freshwater, photosynthetic and secondarily nonphotosynthetic algae that acquired their plastids (chloroplasts) by "secondary" (i.e., eukaryote-eukaryote) endosymbiosis. Consequently, they are among the most genetically complex cells known and have four genomes: a mitochondrial, plastid, "master" nuclear, and residual nuclear genome of secondary endosymbiotic origin, the so-called "nucleomorph" genome. Sequenced nucleomorph genomes are ∼1,000-kilobase pairs (Kbp) or less in size and are comprised of three linear, compositionally biased chromosomes. Although most functionally annotated nucleomorph genes encode proteins involved in core eukaryotic processes, up to 40% of the genes in these genomes remain unidentifiable. To gain insight into the function and evolutionary fate of nucleomorph genomes, we used 454 and Illumina technologies to completely sequence the nucleomorph genome of the cryptophyte Chroomonas mesostigmatica CCMP1168. At 702.9 Kbp in size, the C. mesostigmatica nucleomorph genome is the largest and the most complex nucleomorph genome sequenced to date. Our comparative analyses reveal the existence of a highly conserved core set of genes required for maintenance of the cryptophyte nucleomorph and plastid, as well as examples of lineage-specific gene loss resulting in differential loss of typical eukaryotic functions, e.g., proteasome-mediated protein degradation, in the four cryptophyte lineages examined.


Assuntos
Criptófitas/genética , Deleção de Genes , Especiação Genética , Tamanho do Genoma , Genoma , Células Cultivadas , Mapeamento Cromossômico , Cromossomos , Evolução Molecular , Variação Genética/genética , Genoma/genética , Tamanho do Genoma/genética , Dados de Sequência Molecular , Análise de Sequência de DNA , Especificidade da Espécie , Simbiose/genética
5.
J Eukaryot Microbiol ; 57(6): 453-9, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21040099

RESUMO

Chlorarachniophytes are enigmatic marine unicellular algae that acquired photosynthesis by secondary endosymbiosis. Chlorarachniophytes are unusual in that the nucleus of the engulfed algal cell (a green alga) persists in a miniaturized form, termed a nucleomorph. The nucleomorph genome of the model chlorarachniophyte, Bigelowiella natans CCMP621, is 373 kilobase pairs (kbp) in size, the smallest nuclear genome characterized to date. The B. natans nucleomorph genome is composed of three chromosomes, each with canonical eukaryotic telomeres and sub-telomeric ribosomal DNA (rDNA) operons transcribed away from the chromosome end. Here we present the complete rDNA operon and telomeric region from the nucleomorph genome of Lotharella oceanica CCMP622, a newly characterized chlorarachniophyte strain with a genome ∼610 kbp in size, significantly larger than all other known chlorarachniophytes. We show that the L. oceanica rDNA operon is in the opposite chromosomal orientation to that of B. natans. Furthermore, we determined the rDNA operon orientation of five additional chlorarachniophyte strains, the majority of which possess the same arrangement as L. oceanica, with the exception of Chlorarachnion reptans and those very closely related to B. natans. It is thus possible that the ancestral rDNA operon orientation of the chlorarachniophyte nucleomorph genome might have been the same as in the independently evolved, red algal-derived, nucleomorph genomes of cryptophytes. A U2 small nuclear RNA gene was found adjacent to the telomere in Gymnochlora stellata CCMP2057 and Chlorarachnion sp. CCMP2014. This feature may represent a useful evolutionary character for inferring the relationships among extant lineages.


Assuntos
Cercozoários/citologia , Cercozoários/genética , DNA Ribossômico/genética , Genes de RNAr/genética , Telômero , DNA de Protozoário/química , DNA de Protozoário/genética , Ordem dos Genes , Dados de Sequência Molecular , Óperon , Análise de Sequência de DNA
6.
Annu Rev Genet ; 43: 251-64, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19686079

RESUMO

Nucleomorphs are the remnant nuclei of algal endosymbionts in cryptophytes and chlorarachniophytes, two evolutionarily distinct unicellular eukaryotic lineages that acquired photosynthesis secondarily by the engulfment of red and green algae, respectively. At less than one million base pairs in size, nucleomorph genomes are the most highly reduced nuclear genomes known, with three small linear chromosomes and a gene density similar to that seen in prokaryotes. The independent origin of nucleomorphs in cryptophytes and chlorarachniophytes presents an interesting opportunity to study the reductive evolutionary forces that have led to their remarkable convergence upon similar genome architectures and coding capacities. In this article, we review the current state of knowledge with respect to the structure, function, origin, and evolution of nucleomorph genomes across the known diversity of cryptophyte and chlorarachniophyte algae.


Assuntos
Criptófitas/genética , Eucariotos/genética , Genoma , Clorófitas/genética , Criptófitas/classificação , Criptófitas/citologia , Eucariotos/classificação , Eucariotos/citologia , Rodófitas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA