RESUMO
A variety of electrical synapses are capable of activity-dependent plasticity, including both activity-dependent potentiation and activity-dependent depression. In several types of neurons, activity-dependent electrical synapse plasticity depends on changes in the local Ca2+ environment. To enable study of local Ca2+ signaling that regulates plasticity, we developed a GCaMP Ca2+ biosensor fused to the electrical synapse protein Connexin 36 (Cx36). Cx36-GCaMP transfected into mammalian cell cultures formed gap junctions at cell-cell boundaries and supported Neurobiotin tracer coupling that was regulated by protein kinase A signaling in the same way as Cx36. Cx36-GCaMP gap junctions robustly reported local Ca2+ increases in response to addition of a Ca2+ ionophore with increases in fluorescence that recovered during washout. Recovery was strongly dependent on Na+-Ca2+ exchange activity. In cells transfected with NMDA receptor subunits, Cx36-GCaMP revealed transient and concentration-dependent increases in local Ca2+ on brief application of glutamate. In HeLa cells, glutamate application increased Cx36-GCaMP tracer coupling through a mechanism that depended in part on Ca2+, calmodulin-dependent protein kinase II (CaMKII) activity. This potentiation of coupling did not require exogenous expression of glutamate receptors, but could be accomplished by endogenously expressed glutamate receptors with pharmacological characteristics reminiscent of NMDA and kainate receptors. Analysis of RNA Sequencing data from HeLa cells confirmed expression of NMDA receptor subunits NR1, NR2C, and NR3B. In summary, Cx36-GCaMP is an effective tool to measure changes in the Ca2+ microenvironment around Cx36 gap junctions. Furthermore, HeLa cells can serve as a model system to study glutamate receptor-driven potentiation of electrical synapses.
Assuntos
Sinalização do Cálcio , Junções Comunicantes , Animais , Conexinas/genética , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Células HeLa , Humanos , Proteína delta-2 de Junções ComunicantesRESUMO
Both neurons and glia throughout the central nervous system are organized into networks by gap junctions. Among glia, gap junctions facilitate metabolic homeostasis and intercellular communication. Among neurons, gap junctions form electrical synapses that function primarily for communication. However, in neurodegenerative states due to disease or injury gap junctions may be detrimental to survival. Electrical synapses may facilitate hyperactivity and bystander killing among neurons, while gap junction hemichannels in glia may facilitate inflammatory signaling and scar formation. Advances in understanding mechanisms of plasticity of electrical synapses and development of molecular therapeutics to target glial gap junctions and hemichannels offer new hope to pharmacologically limit neuronal degeneration and enhance recovery.