Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Metab Brain Dis ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687459

RESUMO

Brain aging is a physiological event, and oxidative stress and apoptosis are involved in the natural aging process of the brain. Curcumin is a natural antioxidant with potent anti-aging and neuroprotective properties. Therefore, we investigated the protective effects of curcumin on brain apoptosis and oxidative stress, brain-derived neurotrophic factor (BDNF), and vascular endothelial growth factor (VEGF) in aged rats. Old female Wistar rats were randomly divided into three groups (n = 7); as follows: (1) control; (2); saline and (3) curcumin (received 30 mg/kg of curcumin, 5 days/week for 8 weeks, intraperitoneally). Our results indicated that treatment with curcumin in aged rats attenuates brain lipid peroxidation, which was accompanied by a significant increase in the BDNF, VEGF, superoxide dismutase (SOD) activity, and anti-apoptotic protein BCl-2. No significant change in brain anti-apoptotic Bax protein levels was observed after curcumin treatment. The study indicates that curcumin could alleviate brain aging which may be due to attenuating oxidative stress, inhibiting apoptosis, and up-regulating SOD activity, which in turn enhances VEGF and BDNF. Therefore, curcumin has potential therapeutic value in the treatment of neurological apoptosis, neurogenesis, and angiogenesis changes caused by brain aging.

2.
Cardiovasc Toxicol ; 23(5-6): 177-184, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37184829

RESUMO

This study examined the protective role of short-term aerobic exercise on ZnO NPs-induced cardiac oxidative stress and possible changes of apelin, angiotensin II (AngII) and angiotensin II type I receptor (AT1R) signalling pathway. Thirty-five male Wistar rats were randomized into five groups of seven rats, including control, saline, ZnO NPs, exercise and exercise + ZnO NPs groups. The animal in ZnO NPs and exercise + ZnO NPs groups received 1 mg/kg of ZnO NPs. Rats underwent the treadmill exercise program. Treatments lasted four weeks, 5 days/week. After 4 weeks of treatment, superoxide dismutase (SOD) activity, malondialdehyde (MDA), apelin, Ang II and AT1R concentration were measured in heart tissue.Cardiac MDA, Ang II and AT1R levels significantly increased while SOD activity and apelin levels significantly decreased following ZnO NPs administration. The aerobic exercise induced a significant increase in the SOD activity and apelin levels and a significant decrease in the enhanced MDA, Ang II and AT1R levels in the heart of ZnO NPs-exposed rats. These results suggest that the exercise-induced attenuation of the Ang II-AT1R signalling pathway is mediated by reduced lipid peroxidation, augmented antioxidant defence and enhanced apelin synthesis that may be a protective mechanism to prevent and/or treatment ZnO NPs-induced cardiac oxidative stress.


Assuntos
Terapia por Exercício , Miocárdio , Nanopartículas , Óxido de Zinco , Óxido de Zinco/toxicidade , Ratos Wistar , Animais , Ratos , Peroxidação de Lipídeos , Superóxido Dismutase/análise , Nanopartículas/toxicidade , Apelina/análise , Angiotensina II/análise , Distribuição Aleatória , Coração/fisiologia , Transdução de Sinais , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Miocárdio/química , Receptor Tipo 1 de Angiotensina/análise , Modelos Animais , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA