Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 101(7): 1119-1127, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30682950

RESUMO

Huanglongbing (HLB), a recent worldwide spreading disease on citrus, was detected in July 2009 in Yucatan State of Mexico. The objective of this study was to evaluate the fit of diffusion and classic disease gradient models to large-scale HLB spatial data originated from initial foci to improve sampling, monitoring, and control strategies for Diaphorina citri, vector of Candidatus Liberibacter asiaticus (CLas), putative agent of HLB. Four transect routes were selected: Yuc-1, Yuc-2, QRoo-1, and QRoo-2, based on the directionality of the prevailing winds and foci location of HLB infected plants. In these routes, 35 sites, 5 to 20 km apart, were selected for monthly evaluation during a 12-month period. A 10-insect sample and disease incidence and severity of HLB, further confirmed by PCR, were assessed per site. Mexican lime was more vulnerable (67.5%) than sweet orange (14%). Also, leaf symptoms were mostly found with homogeneous distribution but rarely reaching 100% of the tree canopy during the 12-month period. The diffusion model provided the best fit among the family of time-gradient curves (r2 = 0.90 to 0.99) due to the flexibility of a three-parameter model. The gradients were well conformed to the model in a 25 to 82.6 km range, having the east-west direction the longest effect. Yuc-2 and QRoo-2 transects showed 82.6 and 43.9 km gradients with a diffusion coefficient (Do) of 0.15 and 0.09, respectively. This study constitutes the first quantitative evidence of the regional spread of CLas from a single focus and the application of a flexible model that improved the fit and allowed to better compare different gradients. These results are useful to determine the size of Regional Areas of Diaphorina citri Control (ARCO), a management program currently implemented in Mexico to combat HLB.

2.
PLoS One ; 10(7): e0133861, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26207373

RESUMO

Brevipalpus phoenicis s.l. is an economically important vector of the Citrus leprosis virus-C (CiLV-C), one of the most severe diseases attacking citrus orchards worldwide. Effective control strategies for this mite should be designed based on basic information including its population structure, and particularly the factors that influence its dynamics. We sampled sweet orange orchards extensively in eight locations in Brazil and 12 in Mexico. Population genetic structure and genetic variation between both countries, among locations and among sampling sites within locations were evaluated by analysing nucleotide sequence data from fragments of the mitochondrial cytochrome oxidase subunit I (COI). In both countries, B. yothersi was the most common species and was found in almost all locations. Individuals from B. papayensis were found in two locations in Brazil. Brevipalpus yothersi populations collected in Brazil were more genetically diverse (14 haplotypes) than Mexican populations (four haplotypes). Although geographical origin had a low but significant effect (ca. 25%) on the population structure, the greatest effect was from the within location comparison (37.02 %). Potential factors driving our results were discussed.


Assuntos
Citrus/virologia , Variação Genética , Insetos Vetores/genética , Ácaros/genética , Doenças das Plantas/virologia , Animais , Brasil , Haplótipos , México , Ácaros/virologia
3.
Neotrop Entomol ; 42(4): 419-25, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23949863

RESUMO

We studied the abundance of Brevipalpus spp. in citrus orchards in the Mexican states of Yucatan, Quintana Roo and Campeche. Mites were collected from 100 trees containing a mixture of citrus species where sweet orange was always the main species. Eight collections were made at each location from February 2010 to February 2011. Mites from the genus Brevipalpus were separated from other mites surveyed and their abundance and relationships with the different citrus species were quantified throughout the collection period. A subsample of 25% of the total Brevipalpus mites collected were identified to species level and the interaction of mite species and citrus species were described. Brevipalpus spp. were present on all collection dates and their relative abundance was similar on all citrus species studies. The smallest number of mites collected was during the rainy season. Brevipalpus phoenicis (Geijskes) and Brevipalpus californicus (Banks) were the only two species present and they were found in all locations except Campeche, where only B. phoenicis was present. Yucatan and Campeche are at greater risk of leprosis virus transmission than Quintana Roo because the main vector, B. phoenicis, was more abundant than B. californicus. The implications of our results for the design of more accurate sampling and control methods for Brevipalpus spp. are discussed.


Assuntos
Citrus/parasitologia , Ácaros/classificação , Ácaros/fisiologia , Animais , México , Microscopia Eletrônica de Varredura , Ácaros/anatomia & histologia , Densidade Demográfica
4.
J Appl Microbiol ; 111(4): 939-48, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21722279

RESUMO

AIMS: To evaluate different entomopathogenic fungal isolates against the cactus weevil Metamasius spinolae under laboratory and field conditions, and select an isolate to be used as a tool in the management of this insect pest. METHODS AND RESULTS: Four experiments were carried out. The effect of temperature on the in vitro growth of eight isolates of entomopathogenic fungi (two Metarhizium anisopliae and six Beauveria bassiana) was assessed. The susceptibility of adult M. spinolae to the same isolates was evaluated. Using three selected isolates, the interaction between susceptibility and sex of the insect was studied. Finally, a field experiment was carried out to evaluate infection of adult M. spinolae by the same three isolates under natural abiotic conditions. Overall, growth rate was greatest at 25°C for all the isolates. In vitro growth of M. anisopliae was greater than B. bassiana. Mortality of adult M. spinolae was greater when inoculated with B. bassiana compared with isolates of M. anisopliae. Susceptibility had no interaction with the sex of the insect. The proportion of insects succumbing to infection was smaller when incubated under field conditions than when incubated under laboratory conditions. CONCLUSIONS: The experiments described here showed a complex interaction between entomopathogenic fungi and M. spinolae, and these data allows us to select isolate Bb107 as a first step towards its use in the management of this pest insect. SIGNIFICANCE AND IMPACT OF THE STUDY: Our results showed that entomopathogenic fungi can be used for the control of M. spinolae, which may help reduce the use of chemical insecticides and, therefore, the exposure of Opuntia ficus-indica producers to pesticides.


Assuntos
Beauveria/patogenicidade , Cactaceae/parasitologia , Metarhizium/patogenicidade , Controle Biológico de Vetores/métodos , Gorgulhos/microbiologia , Animais , Beauveria/crescimento & desenvolvimento , Feminino , Masculino , Metarhizium/crescimento & desenvolvimento , Temperatura
5.
Plant Dis ; 83(3): 223-228, 1999 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30845498

RESUMO

The temporal progress of malformation (MM) of mango (Mangifera indica) was studied from 1993 to 1995 with three management technologies applied to commercial plantations in North Guerrero, Mexico. Management influenced shoot production and thus determined the dynamics of epidemics. Environmental factors also affected disease incidence, particularly through an apparent effect on inoculum dispersal. In general, integrated management (IM), consisting of pruning, acaricide, and fungicide sprays, resulted in slower rates of epidemic development, lower levels of initial and final disease, and lesser areas under the disease progress curves. In the first cycle, IM increased yield per tree by 51% in relation to high technology (HT) and 74% in relation to lower traditional technology (LT), representing a benefit-cost rate of 2.8 and 3.3, respectively. Change of malformation incidence was correlated positively with the number of macroconidia of Fusarium sp. trapped in the canopy (r = 0.90, P = 0.0001) and wind speed (r = 0.83, P = 0.0001); both variables lagged over a 4-month period. The greatest change in malformation occurred during the main vegetative flush, which occurred 3 to 6 months after picking the fruit (May). The accumulated proportion of diseased shoots was correlated with the following variables measured over a 1-week period: average maximum daily temperature (r = -0.68, P = 0. 01), average temperature per hour (r = -0.59, P = 0.04), average number of hours with relative humidity ≥60% (r = -0.82, P = 0.001), and wind speed (r = 0.94, P = 0.0001). In general, the greatest spore density was found during the rainy season, with a morning periodicity showing the highest correlation with wind speed (r = 0.812, P = 0.0001). F. subglutinans was isolated consistently from diseased (86%) and asymptomatic (5%) vegetative and flowering shoots.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA