Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 38(20): e70109, 2024 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-39441606

RESUMO

Glaucoma is a chronic optic neuropathy characterized by the progressive degeneration of retinal ganglion cells (RGC). These cells play a crucial role in transmitting visual and non-visual information to brain regions, including the suprachiasmatic nucleus (SCN), responsible for synchronizing biological rhythms. To understand how glaucoma affects circadian rhythm synchronization, we investigated potential changes in the molecular clock machinery in the SCN. We found that the progressive increase in intraocular pressure (IOP) negatively correlated with spontaneous locomotor activity (SLA). Transcriptome analysis revealed significant alterations in the SCN of glaucomatous mice, including downregulation of genes associated with circadian rhythms. In fact, we showed a loss of diurnal oscillation in the expression of vasoactive intestinal peptide (Vip), its receptor (Vipr2), and period 1 (Per1) in the SCN of glaucomatous mice. These findings were supported by the 7-h phase shift in the peak expression of arginine vasopressin (Avp) in the SCN of mice with glaucoma. Despite maintaining a 24-h period under both light/dark (LD) and constant dark (DD) conditions, glaucomatous mice exhibited altered SLA rhythms, characterized by decreased amplitude. Taken altogether, our findings provide evidence of how glaucoma affects the regulation of the central circadian clock and its consequence on the regulation of circadian rhythms.


Assuntos
Ritmo Circadiano , Glaucoma , Camundongos Endogâmicos C57BL , Células Ganglionares da Retina , Núcleo Supraquiasmático , Animais , Camundongos , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Ritmo Circadiano/fisiologia , Núcleo Supraquiasmático/metabolismo , Glaucoma/metabolismo , Glaucoma/fisiopatologia , Masculino , Pressão Intraocular/fisiologia , Peptídeo Intestinal Vasoativo/metabolismo , Peptídeo Intestinal Vasoativo/genética , Proteínas Circadianas Period/metabolismo , Proteínas Circadianas Period/genética , Locomoção , Arginina Vasopressina/metabolismo , Arginina Vasopressina/genética , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética
2.
J Steroid Biochem Mol Biol ; 237: 106443, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38092129

RESUMO

The aims of the present study were to investigate the global changes on proteome of human testicular embryonal carcinoma NT2/D1 cells treated with 17ß-estradiol (E2), and the effects of this hormone on migration, invasion, and colony formation of these cells. A quantitative proteomic analysis identified the presence of 1230 proteins in both E2-treated and control cells. The analysis revealed 75 differentially abundant proteins (DAPs), out of which 43 proteins displayed a higher abundance and, 30 proteins showed a lower abundance in E2-treated NT2/D1 cancer cells. Functional analysis using IPA highlighted some activation processes such as migration, invasion, metastasis, and tumor growth. Interestingly, the treatment with E2 and ERß-selective agonist DPN increased the migration of NT2/D1 cells. On the other hand, ERα-selective agonist PPT did not modify cell migration, indicating that ERß is the upstream receptor involved in this process. The activation of ERß increased the invasion and anchorage­independent growth of NT2/D1 cells more intensely than ERα. ERα and ERß may play overlapping roles on invasion and colony formation of these cells. Further studies are required to clarify the mechanism underlying these effects. The molecular mechanisms revealed by proteomic and functional studies might also guide the development of potential targets for a better understanding of the biology of these cells and novel treatments for non-seminoma in the future.


Assuntos
Carcinoma Embrionário , Receptores de Estrogênio , Humanos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Proteômica , Estradiol/farmacologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-37972916

RESUMO

Light is a strong stimulus for the sensory and endocrine systems. The opsins constitute a large family of proteins that can respond to specific light wavelengths. Hippocampus reidi is a near-threatened seahorse that has a diverse color pattern and sexual dimorphism. Over the years, H. reidi's unique characteristics, coupled with its high demand and over-exploitation for the aquarium trade, have raised concerns about its conservation, primarily due to their significant impact on wild populations. Here, we characterized chromatophore types in juvenile and adult H. reidi in captivity, and the effects of specific light wavelengths with the same irradiance (1.20 mW/cm2) on color change, growth, and survival rate. The xanthophores and melanophores were the major components of H. reidi pigmentation with differences in density and distribution between life stages and sexes. In the eye and skin of juveniles, the yellow (585 nm) wavelength induced a substantial increase in melanin levels compared to the individuals kept under white light (WL), blue (442 nm), or red (650 nm) wavelengths. In addition, blue and yellow wavelengths led to a higher juvenile mortality rate in comparison to the other treatments. Adult seahorses showed a rhythmic color change over 24 h, the highest reflectance values were obtained in the light phase, representing a daytime skin lightening for individuals under WL, blue and yellow wavelength, with changes in the acrophase. The yellow wavelength was more effective on juvenile seahorse pigmentation, while the blue wavelength exerted a stronger effect on the regulation of adult physiological color change. Dramatic changes in the opsin mRNA levels were life stage-dependent, which may infer ontogenetic opsin functions throughout seahorses' development. Exposure to specific wavelengths differentially affected the opsins mRNA levels in the skin and eyes of juveniles. In the juveniles, skin transcripts of visual (rh1, rh2, and lws) and non-visual opsins (opn3 and opn4x) were higher in individuals under yellow light. While in the juvenile's eyes, only rh1 and rh2 had increased transcripts influenced by yellow light; the lws and opn3 mRNA levels were higher in juveniles' eyes under WL. Prolonged exposure to yellow wavelength stimulates a robust increase in the antioxidant enzymes sod1 and sod2 mRNA levels. Our findings indicate that changes in the visible light spectrum alter physiological processes at different stages of life in H. reidi and may serve as the basis for a broader discussion about the implications of artificial light for aquatic species in captivity.


Assuntos
Opsinas , Smegmamorpha , Humanos , Animais , Opsinas/genética , Opsinas/metabolismo , Pigmentação da Pele , Smegmamorpha/genética , Smegmamorpha/metabolismo , Oxirredução , RNA Mensageiro/metabolismo
4.
J Photochem Photobiol B ; 242: 112702, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37018912

RESUMO

The presence of melanopsin (OPN4) has been shown in cultured murine melanocytes and was associated with ultraviolet A radiation (UVA) reception. Here we demonstrated the protective role of OPN4 in skin physiology and the increased UVA-induced damage in its absence. Histological analysis showed a thicker dermis and thinner hypodermal white adipose tissue layer in Opn4-/- (KO) mice than in wild-type (WT) animals. Proteomics analyses revealed molecular signatures associated with proteolysis, remodeling chromatin, DNA damage response (DDR), immune response, and oxidative stress coupled with antioxidant responses in the skin of Opn4 KO mice compared to WT. Skin protein variants were found in Opn4 KO mice and Opn2, Opn3, and Opn5 gene expressions were increased in the genotype. We investigated each genotype response to UVA stimulus (100 kJ/m2). We found an increase of Opn4 gene expression following stimulus on the skin of WT mice suggesting melanopsin as a UVA sensor. Proteomics findings suggest that UVA decreases DDR pathways associated with ROS accumulation and lipid peroxidation in the skin of Opn4 KO mice. Relative changes in methylation (H3-K79) and acetylation sites of histone between genotypes and differentially modulated by UVA stimulus were also observed. We also identified alterations of molecular traits of the central hypothalamus-pituitary- adrenal (HPA) and the skin HPA-like axes in the absence of OPN4. Higher skin corticosterone levels were detected in UVA-stimulated Opn4 KO compared to irradiated WT mice. Taken altogether, functional proteomics associated with gene expression experiments allowed a high-throughput evaluation that suggests an important protective role of OPN4 in regulating skin physiology in the presence and absence of UVA radiation.


Assuntos
Opsinas de Bastonetes , Pele , Animais , Camundongos , Homeostase , Melanócitos/metabolismo , Proteínas de Membrana/metabolismo , Opsinas de Bastonetes/genética , Opsinas de Bastonetes/metabolismo , Pele/metabolismo , Raios Ultravioleta/efeitos adversos
5.
Am J Physiol Endocrinol Metab ; 324(4): E358-E373, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36856189

RESUMO

Cold acclimation and pharmacological peroxisome proliferator-activated receptor γ (PPARγ) activation have each earlier been shown to recruit brown adipose tissue (BAT) and beige adipocytes thermogenic machinery, enhancing uncoupling protein 1 (UCP1)-mediated thermogenic capacity. We here investigated whether cold acclimation and PPARγ agonism combined have additive effects in inducing brown and beige adipocytes UCP1 content and whether this translates into a higher thermogenic capacity and energy expenditure. C57BL/6J mice treated or not with pioglitazone (30 mg/kg/day) were maintained at 21°C or exposed to cold (7°C) for 15 days and evaluated for thermogenic capacity, energy expenditure and interscapular BAT (iBAT) and inguinal white adipose tissue (iWAT) mass, morphology, UCP1 content and gene expression, glucose uptake and oxygen consumption. Cold acclimation and PPARγ agonism combined synergistically increased iBAT and iWAT total UCP1 content and mRNA levels of the thermogenesis-related proteins PGC1a, CIDEA, FABP4, GYK, PPARa, LPL, GLUTs (GLUT1 in iBAT and GLUT4 in iWAT), and ATG when compared to cold and pioglitazone individually. This translated into a stronger increase in body temperature in response to the ß3-adrenergic agonist CL316,243 and iBAT and iWAT respiration induced by succinate and pyruvate in comparison to that seen in either cold-acclimated or pioglitazone-treated mice. However, basal energy expenditure, BAT glucose uptake and glucose tolerance were not increased above that seen in cold-acclimated untreated mice. In conclusion, cold acclimation and PPARγ agonism combined induced a robust increase in brown and beige adipocytes UCP1 content and thermogenic capacity, much higher than each treatment individually. However, our findings enforce the concept that increases in total UCP1 do not innately lead to higher energy expenditure.NEW & NOTEWORTHY Cold acclimation and PPARγ agonism combined markedly increase brown and white adipose tissue total UCP1 content and mRNA levels of thermogenesis-related proteins. Higher UCP1 protein levels did not result in higher energy expenditure. The high thermogenic capacity induced by PPARγ agonism in cold-exposed animals markedly increases animals' body temperature in response to the ß3-adrenergic agonist CL316,243.


Assuntos
Tecido Adiposo Branco , PPAR gama , Camundongos , Animais , Pioglitazona/farmacologia , PPAR gama/genética , PPAR gama/metabolismo , Camundongos Endogâmicos C57BL , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Marrom/metabolismo , Metabolismo Energético/fisiologia , Aclimatação/fisiologia , Termogênese , Glucose/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Temperatura Baixa
6.
Front Physiol ; 13: 903060, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35800348

RESUMO

Environmental cues synchronize endogenous rhythms of many physiological processes such as hormone synthesis and secretion. Little is known about the diurnal pattern of hormones and gene expression of the Callinectes sapidus molt cycle. We aimed to investigate in the eyestalk and hepatopancreas of premolt and intermolt C. sapidus the following parameters: 1) the diurnal expression of the ecdysteroid receptor CasEcR isoforms, and the molt inhibiting hormone CasMIH; 2) the diurnal hemolymph ecdysteroid and melatonin levels; and 3) melatonin effects on the transcripts of the above-mentioned genes in intermolt C. sapidus. Ecdysteroid levels were higher in the premolt than the intermolt animals at all time points evaluated (ZTs). Premolt crabs displayed a variation of ecdysteroid concentration between time points, with a reduction at ZT17. No difference in the melatonin level was seen in either molt stage or between stages. In the eyestalk of intermolt animals, CasEcR expression oscillated, with a peak at ZT9, and premolt crabs have a reduction at ZT9; CasMIH transcripts did not vary along 24 h in either molt stage. Moreover, the evaluated eyestalk genes were more expressed at ZT9 in the intermolt than the premolt crabs. In the hepatopancreas, CasEcR expression showed a peak at ZT9 in premolt crabs. Exogenous melatonin (10-7 mol/animal) reduced the expression of both genes in the eyestalk at ZT17. In the hepatopancreas, melatonin markedly increased the expression of the CasEcR gene at ZT9. Taken altogether, our results are pioneer in demonstrating the daily oscillation of gene expression associated to molt cycle stages, as well as the daily ecdysteroid and melatonin levels and the remarkable influence of melatonin on the molt cycle of C. sapidus.

7.
Int J Mol Sci ; 23(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35806020

RESUMO

To investigate the role of the transient receptor potential channel vanilloid type 1 (TRPV1) in hepatic glucose metabolism, we analyzed genes related to the clock system and glucose/lipid metabolism and performed glycogen measurements at ZT8 and ZT20 in the liver of C57Bl/6J (WT) and Trpv1 KO mice. To identify molecular clues associated with metabolic changes, we performed proteomics analysis at ZT8. Liver from Trpv1 KO mice exhibited reduced Per1 expression and increased Pparα, Pparγ, Glut2, G6pc1 (G6pase), Pck1 (Pepck), Akt, and Gsk3b expression at ZT8. Liver from Trpv1 KO mice also showed reduced glycogen storage at ZT8 but not at ZT20 and significant proteomics changes consistent with enhanced glycogenolysis, as well as increased gluconeogenesis and inflammatory features. The network propagation approach evidenced that the TRPV1 channel is an intrinsic component of the glucagon signaling pathway, and its loss seems to be associated with increased gluconeogenesis through PKA signaling. In this sense, the differentially identified kinases and phosphatases in WT and Trpv1 KO liver proteomes show that the PP2A phosphatase complex and PKA may be major players in glycogenolysis in Trpv1 KO mice.


Assuntos
Gluconeogênese , Proteoma , Canais de Cátion TRPV , Animais , Expressão Gênica , Gluconeogênese/genética , Glucose/metabolismo , Glicogênio/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteoma/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
8.
Commun Biol ; 5(1): 461, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562405

RESUMO

The search for new therapeutical targets for cutaneous melanoma and other cancers is an ongoing task. We expanded this knowledge by evaluating whether opsins, light- and thermo-sensing proteins, could display tumor-modulatory effects on melanoma cancer. Using different experimental approaches, we show that melanoma cell proliferation is slower in the absence of Opn4, compared to Opn4WT due to an impaired cell cycle progression and reduced melanocyte inducing transcription factor (Mitf) expression. In vivo tumor progression of Opn4KO cells is remarkably reduced due to slower proliferation, and higher immune system response in Opn4KO tumors. Using pharmacological assays, we demonstrate that guanylyl cyclase activity is impaired in Opn4KO cells. Evaluation of Tumor Cancer Genome Atlas (TCGA) database confirms our experimental data as reduced MITF and OPN4 expression in human melanoma correlates with slower cell cycle progression and presence of immune cells in the tumor microenvironment (TME). Proteomic analyses of tumor bulk show that the reduced growth of Opn4KO tumors is associated with reduced Mitf signaling, higher translation of G2/M proteins, and impaired guanylyl cyclase activity. Conversely, in Opn4WT tumors increased small GTPase and an immune-suppressive TME are found. Such evidence points to OPN4 as an oncogene in melanoma, which could be pharmacologically targeted.


Assuntos
Melanoma , Neoplasias Cutâneas , Guanilato Ciclase , Humanos , Melanoma/genética , Oncogenes , Proteômica , Opsinas de Bastonetes , Neoplasias Cutâneas/genética , Microambiente Tumoral , Melanoma Maligno Cutâneo
9.
Front Physiol ; 12: 707067, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899364

RESUMO

The control of the biological rhythms begins with the activation of photo- and thermosensitive cells located in various organs of the fish such as brain, eye, and skin, but a central clock is still to be identified in teleosts. Thermal changes are stressors which increase cortisol and affect the rhythm of other hormones such as melatonin and growth hormone (GH), in both endo- and ectothermic organisms. Our aim was to investigate how temperature (23°C for 6 days) lower than the optimal (28°C) modulates expression of several gene pathways including growth hormone (gh1) and its receptors (ghra, ghrb), insulin-like growth factor1 (igf1a, igf1b) and its receptors (igf1ra, igf1rb), cortisol and its receptor (gr), the limiting enzyme of melatonin synthesis (arylalkylamine N-acetyltransferase, aanat) and melatonin receptors (mtnr1aa, mtnr1bb), as well as their relationship with clock genes in Danio rerio in early light and early dark phases of the day. Lower temperature reduced the expression of the hormone gene gh1, and of the related receptors ghra, ghrb, igf1ra, and igf1rb. Cortisol levels were higher at the lower temperature, with a decrease of its receptor (gr) transcripts in the liver. Interestingly, we found higher levels of aanat transcripts in the brain at 23°C. Overall, lower temperature downregulated the transcription of hormone related genes and clock genes. The results suggest a strong correlation of temperature challenge with the clock molecular mechanism and the endocrine systems analyzed, especially the growth hormone and melatonin axes, in D. rerio tissues.

10.
Curr Issues Mol Biol ; 43(3): 1436-1450, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34698095

RESUMO

Skin melanocytes harbor a complex photosensitive system comprised of opsins, which were shown, in recent years, to display light- and thermo-independent functions. Based on this premise, we investigated whether melanopsin, OPN4, displays such a role in normal melanocytes. In this study, we found that murine Opn4KO melanocytes displayed a faster proliferation rate compared to Opn4WT melanocytes. Cell cycle population analysis demonstrated that OPN4KO melanocytes exhibited a faster cell cycle progression with reduced G0-G1, and highly increased S and slightly increased G2/M cell populations compared to the Opn4WT counterparts. Expression of specific cell cycle-related genes in Opn4KO melanocytes exhibited alterations that corroborate a faster cell cycle progression. We also found significant modification in gene and protein expression levels of important regulators of melanocyte physiology. PER1 protein level was higher while BMAL1 and REV-ERBα decreased in Opn4KO melanocytes compared to Opn4WT cells. Interestingly, the gene expression of microphthalmia-associated transcription factor (MITF) was upregulated in Opn4KO melanocytes, which is in line with a higher proliferative capability. Taken altogether, we demonstrated that OPN4 regulates cell proliferation, cell cycle, and affects the expression of several important factors of the melanocyte physiology; thus, arguing for a putative tumor suppression role in melanocytes.


Assuntos
Ciclo Celular/genética , Melanócitos/metabolismo , Opsinas de Bastonetes/deficiência , Animais , Biomarcadores , Proteínas CLOCK/genética , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Proliferação de Células , Células Cultivadas , Citometria de Fluxo , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Melanócitos/efeitos dos fármacos , Camundongos , Pele/citologia , Pele/metabolismo
11.
Cell Tissue Res ; 385(3): 519-538, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34236517

RESUMO

Since the discovery of melanopsin as a retinal non-visual photopigment, opsins have been described in several organs and cells. This distribution is strikingly different from the classical localization of photopigments in light-exposed tissues such as the eyes and the skin. More than 10 years ago, a new paradigm in the field was created as opsins were shown, to detect not only light, but also thermal energy in Drosophila. In agreement with these findings, thermal detection by opsins was also reported in mammalian cells. Considering the presence of opsins in tissues not reached by light, an intriguing question has emerged: What is the role of a classical light-sensor, and more recently appreciated thermo-sensor, in these tissues? To tackle this question, we address in this review the most recent studies in the field, with emphasis in mammals. We provide the present view about the role of opsins in peripheral tissues, aiming to integrate the current knowledge of the presence and function of opsins in organs that are not directly affected by light.


Assuntos
Luz , Opsinas/metabolismo , Retina/fisiologia
12.
Front Oncol ; 11: 667715, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34041030

RESUMO

Melanoma skin cancer is extremely aggressive with increasing incidence and mortality. Among the emerging therapeutic targets in the treatment of cancer, the family of transient receptor potential channels (TRPs) has been reported as a possible pharmacological target. Specifically, the ankyrin subfamily, representing TRPA1 channels, can act as a pro-inflammatory hub. These channels have already been implicated in the control of intracellular metabolism in several cell models, but little is known about their role in immune cells, and how it could affect tumor progression in a process known as immune surveillance. Here, we investigated the participation of the TRPA1 channel in the immune response against melanoma tumor progression in a mouse model. Using Trpa1 +/+ and Trpa1 -/- animals, we evaluated tumor progression using murine B16-F10 cells and assessed isolated CD8+ T cells for respiratory and cytotoxic functions. Tumor growth was significantly reduced in Trpa1 -/- animals. We observed an increase in the frequency of circulating lymphocytes. Using a dataset of CD8+ T cells isolated from metastatic melanoma patients, we found that TRPA1 reduction correlates with several immunological pathways. Naïve CD8+ T cells from Trpa1 +/+ and Trpa1 -/- animals showed different mitochondrial respiration and glycolysis profiles. However, under CD3/CD28 costimulatory conditions, the absence of TRPA1 led to an even more extensive metabolic shift, probably linked to a greater in vitro killling ability of Trpa1 -/- CD8+ T cells. Therefore, these data demonstrate an unprecedented role of TRPA1 channel in the metabolism control of the immune system cells during carcinogenesis.

13.
Biochim Biophys Acta Mol Cell Res ; 1867(10): 118789, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32645331

RESUMO

Cutaneous melanocytes and melanoma cells express several opsins, of which melanopsin (OPN4) detects temperature and UVA radiation. To evaluate the interaction between OPN4 and UVA radiation, normal and malignant Opn4WT and Opn4KO melanocytes were exposed to three daily low doses (total 13.2 kJ/m2) of UVA radiation. UVA radiation led to a reduction of proliferation in both Opn4WT cell lines; however, only in melanoma cells this effect was associated with increased cell death by apoptosis. Daily UVA stimuli induced persistent pigment darkening (PPD) in both Opn4WT cell lines. Upon Opn4 knockout, all UVA-induced effects were lost in three independent clones of Opn4KO melanocytes and melanoma cells. Per1 bioluminescence was reduced after 1st and 2nd UVA radiations in Opn4WT cells. In Opn4KO melanocytes and melanoma cells, an acute increase of Per1 expression was seen immediately after each stimulus. We also found that OPN4 expression is downregulated in human melanoma compared to normal skin, and it decreases with disease progression. Interestingly, metastatic melanomas with low expression of OPN4 present increased expression of BMAL1 and longer overall survival. Collectively, our findings reinforce the functionality of the photosensitive system of melanocytes that may subsidize advancements in the understanding of skin related diseases, including cancer.


Assuntos
Apoptose/efeitos da radiação , Relógios Biológicos/efeitos da radiação , Melanócitos/patologia , Melanócitos/efeitos da radiação , Pigmentação/efeitos da radiação , Opsinas de Bastonetes/metabolismo , Raios Ultravioleta , Animais , Contagem de Células , Ciclo Celular/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Relação Dose-Resposta à Radiação , Humanos , Melanoma/patologia , Camundongos , Neoplasias Cutâneas/patologia , Melanoma Maligno Cutâneo
14.
Cell Mol Life Sci ; 76(19): 3801-3826, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31222374

RESUMO

The skin is the interface between the organism and the external environment, acting as its first barrier. Thus, this organ is constantly challenged by physical stimuli such as UV and infrared radiation, visible light, and temperature as well as chemicals and pathogens. To counteract the deleterious effects of the above-mentioned stimuli, the skin has complex defense mechanisms such as: immune and neuroendocrine systems; shedding of epidermal squamous layers and apoptosis of damaged cells; DNA repair; and pigmentary system. Here we have reviewed the current knowledge regarding which stimuli affect the molecular clock of the skin, the consequences to skin-related biological processes and, based on such knowledge, we suggest some therapeutic targets. We also explored the recent advances regarding the molecular clock disruption in melanoma, its impact on the carcinogenic process, and its therapeutic value in melanoma treatment.


Assuntos
Relógios Circadianos , Melanoma/etiologia , Neoplasias Cutâneas/etiologia , Fenômenos Fisiológicos da Pele , Animais , Humanos , Melanoma/tratamento farmacológico , Pele/metabolismo , Neoplasias Cutâneas/tratamento farmacológico
15.
Front Oncol ; 8: 185, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29946530

RESUMO

INTRODUCTION: Melanoma is the most lethal type of skin cancer, with increasing incidence and mortality rates worldwide. Multiple studies have demonstrated a link between cancer development/progression and circadian disruption; however, the complex role of tumor-autonomous molecular clocks remains poorly understood. With that in mind, we investigated the pathophysiological relevance of clock genes expression in metastatic melanoma. METHODS: We analyzed gene expression, somatic mutation, and clinical data from 340 metastatic melanomas from The Cancer Genome Atlas, as well as gene expression data from 234 normal skin samples from genotype-tissue expression. Findings were confirmed in independent datasets. RESULTS: In melanomas, the expression of most clock genes was remarkably reduced and displayed a disrupted pattern of co-expression compared to the normal skins, indicating a dysfunctional circadian clock. Importantly, we demonstrate that the expression of the clock gene aryl hydrocarbon receptor nuclear translocator-like protein 1 (BMAL1) positively correlates with patient overall survival and with the expression of T-cell activity and exhaustion markers in the tumor bulk. Accordingly, high BMAL1 expression in pretreatment samples was significantly associated with clinical benefit from immune checkpoint inhibitors. The robust intratumoral T-cell infiltration/activation observed in patients with high BMAL1 expression was associated with a decreased expression of key DNA-repair enzymes, and with an increased mutational/neoantigen load. CONCLUSION: Overall, our data corroborate previous reports regarding the impact of BMAL1 expression on the cellular DNA-repair capacity and indicate that alterations in the tumor-autonomous molecular clock could influence the cellular composition of the surrounding microenvironment. Moreover, we revealed the potential of BMAL1 as a clinically relevant prognostic factor and biomarker for T-cell-based immunotherapies.

16.
Int J Mol Sci ; 19(4)2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29614021

RESUMO

The biological clock has received increasing interest due to its key role in regulating body homeostasis in a time-dependent manner. Cancer development and progression has been linked to a disrupted molecular clock; however, in melanoma, the role of the biological clock is largely unknown. We investigated the effects of the tumor on its micro- (TME) and macro-environments (TMaE) in a non-metastatic melanoma model. C57BL/6J mice were inoculated with murine B16-F10 melanoma cells and 2 weeks later the animals were euthanized every 6 h during 24 h. The presence of a localized tumor significantly impaired the biological clock of tumor-adjacent skin and affected the oscillatory expression of genes involved in light- and thermo-reception, proliferation, melanogenesis, and DNA repair. The expression of tumor molecular clock was significantly reduced compared to healthy skin but still displayed an oscillatory profile. We were able to cluster the affected genes using a human database and distinguish between primary melanoma and healthy skin. The molecular clocks of lungs and liver (common sites of metastasis), and the suprachiasmatic nucleus (SCN) were significantly affected by tumor presence, leading to chronodisruption in each organ. Taken altogether, the presence of non-metastatic melanoma significantly impairs the organism's biological clocks. We suggest that the clock alterations found in TME and TMaE could impact development, progression, and metastasis of melanoma; thus, making the molecular clock an interesting pharmacological target.


Assuntos
Relógios Circadianos , Regulação Neoplásica da Expressão Gênica , Melanoma/metabolismo , Animais , Linhagem Celular Tumoral , Fígado/metabolismo , Pulmão/metabolismo , Melanoma/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Pele/metabolismo , Núcleo Supraquiasmático/metabolismo , Microambiente Tumoral
17.
Eur J Cell Biol ; 97(3): 150-162, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29395480

RESUMO

The mammalian skin has a photosensitive system comprised by several opsins, including rhodopsin (OPN2) and melanopsin (OPN4). Recently, our group showed that UVA (4.4 kJ/m2) leads to immediate pigment darkening (IPD) in murine normal and malignant melanocytes. We show the role of OPN2 and OPN4 as UVA sensors: UVA-induced IPD was fully abolished when OPN4 was pharmacologically inhibited by AA9253 or when OPN2 and OPN4 were knocked down by siRNA in both cell lines. Our data, however, demonstrate that phospholipase C/protein kinase C pathway, a classical OPN4 pathway, is not involved in UVA-induced IPD in either cell line. Nonetheless, in both cell types we have shown that: a) intracellular calcium signal is necessary for UVA-induced IPD; b) the involvement of CaMK II, whose inhibition, abolished the UVA-induced IPD; c) the role of CAMK II/NOS/sGC/cGMP pathway in the process since inhibition of either NOS or sGC abolished the UVA-induced IPD. Taken altogether, we show that OPN2 and OPN4 participate in IPD induced by UVA in murine normal and malignant melanocytes through a conserved common pathway. Interestingly, upon knockdown of OPN2 or OPN4, the UVA-driven IPD is completely lost, which suggests that both opsins are required and cooperatively signal in murine both cell lines. The participation of OPN2 and OPN4 system in UVA radiation-induced response, if proven to take place in human skin, may represent an interesting pharmacological target for the treatment of depigmentary disorders and skin-related cancer.


Assuntos
Melanócitos/metabolismo , Melanócitos/efeitos da radiação , Rodopsina/metabolismo , Opsinas de Bastonetes/metabolismo , Pigmentação da Pele/efeitos da radiação , Animais , Linhagem Celular Tumoral , Melanoma Experimental/metabolismo , Camundongos , Pele/metabolismo , Pele/efeitos da radiação , Pigmentação da Pele/fisiologia , Raios Ultravioleta
18.
Sci Rep ; 7(1): 13977, 2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-29070825

RESUMO

Melanopsin (OPN4) is a photo-pigment found in a small subset of intrinsically photosensitive ganglion cells (ipRGCs) of the mammalian retina. These cells play a role in synchronizing the central circadian pacemaker to the astronomical day by conveying information about ambient light to the hypothalamic suprachiasmatic nucleus, the site of the master clock. We evaluated the effect of a heat stimulus (39.5 °C) on clock gene (Per1 and Bmal1) expression in cultured murine Melan-a melanocytes synchronized by medium changes, and in B16-F10 melanoma cells, in the presence of the selective OPN4 antagonist AA92593, or after OPN4 knockdown by small interfering RNA (siRNA). In addition, we evaluated the effects of heat shock on the localization of melanopsin by immunocytochemistry. In both cell lines melanopsin was found in a region capping the nucleus and heat shock did not affect its location. The heat-induced increase of Per1 expression was inhibited when melanopsin was pharmacologically blocked by AA92593 as well as when its protein expression was suppressed by siRNA in both Melan-a and B16-F10 cells. These data strongly suggest that melanopsin is required for thermo-reception, acting as a thermo-opsin that ultimately feeds the local circadian clock in mouse melanocytes and melanoma cells.


Assuntos
Proteínas CLOCK/metabolismo , Relógios Circadianos/genética , Temperatura Alta , Melanócitos/metabolismo , Melanoma Experimental/genética , Proteínas Circadianas Period/metabolismo , Opsinas de Bastonetes/metabolismo , Animais , Proteínas CLOCK/genética , Células Cultivadas , Regulação da Expressão Gênica , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Proteínas Circadianas Period/genética , RNA Interferente Pequeno/genética , Opsinas de Bastonetes/antagonistas & inibidores , Opsinas de Bastonetes/genética
19.
Biochim Biophys Acta Mol Cell Res ; 1864(12): 2415-2427, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28943398

RESUMO

Transient receptor potential (TRP) channels are known to regulate energy metabolism, and TRPM8 has become an interesting player in this context. Here we demonstrate the role of the cold sensor TRPM8 in the regulation of clock gene and clock controlled genes in brown adipose tissue (BAT). We investigated TrpM8 temporal profile in the eyes, suprachiasmatic nucleus and BAT; only BAT showed temporal variation of TrpM8 transcripts. Eyes from mice lacking TRPM8 lost the temporal profile of Per1 in LD cycle. This alteration in the ocular circadian physiology may explain the delay in the onset of locomotor activity in response to light pulse, as compared to wild type animals (WT). Brown adipocytes from TrpM8 KO mice exhibited a larger multilocularity in comparison to WT or TrpV1 KO mice. In addition, Ucp1 and UCP1 expression was significantly reduced in TrpM8 KO mice in comparison to WT mice. Regarding circadian components, the expression of Per1, Per2, Bmal1, Pparα, and Pparß oscillated in WT mice kept in LD, whereas in the absence of TRPM8 the expression of clock genes was reduced in amplitude and lack temporal oscillation. Thus, our results reveal new roles for TRPM8 channel: it participates in the regulation of clock and clock-controlled genes in the eyes and BAT, and in BAT thermogenesis. Since disruption of the clock machinery has been associated with many metabolic disorders, the pharmacological modulation of TRPM8 channel may become a promising therapeutic target to counterbalance weight gain, through increased thermogenesis, energy expenditure, and clock gene activation.


Assuntos
Tecido Adiposo Marrom/metabolismo , Ritmo Circadiano/genética , Canais de Cátion TRPM/genética , Termogênese/genética , Tecido Adiposo Marrom/crescimento & desenvolvimento , Animais , Metabolismo Energético/genética , Olho/crescimento & desenvolvimento , Olho/metabolismo , Camundongos , Camundongos Knockout , Sensação Térmica/genética
20.
J Therm Biol ; 68(Pt A): 128-138, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28689714

RESUMO

It is believed that the biological systems perceiving temperature and light daily cycles were subjected to the simultaneous selective pressures, which resulted in their co-evolutionary association. We investigated the influence of 1h 33°C heat shock on the expression of clock and heat shock protein genes, as well as the role of the thermo-TRP channel, TRPV1, in ZEM-2S cells of the teleost Danio rerio, in constant dark (DD) or light-dark cycles (LD). After heat shock, we observed an acute increase of hsp90 aa1 levels in both DD and LD conditions. Interestingly, the expression of hsp90 aa1 was two-fold lower in LD than in DD, what suggests an antagonistic effect of white light on heat shock action. Regarding clock genes, no effect was found in cells subjected to the heat shock in DD. When cells were kept in LD, the expression of per1, per2, cry1a, and cry1b increased in response to heat shock, indicating that heat shock only affects clock core of LD-synchronized ZEM-2S cells. We then evaluated whether TRPV1 played a role in heat-mediated hsp90 aa1 and per2 responses: hsp90 aa1 increase was unaffected whereas per2 increase was partially blocked by TRPV1 inhibitor, demonstrating the channel participation in clock gene regulation by heat shock. Taken together, our results open a novel investigative perspective regarding the relationship between temperature and clock genes, placing a new player in the regulation of this phenomenon: the TRPV1 channel.


Assuntos
Ritmo Circadiano/genética , Luz , Temperatura , Canais de Potencial de Receptor Transitório/fisiologia , Peixe-Zebra/fisiologia , Animais , Regulação da Expressão Gênica , Fotoperíodo , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA