Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Neurosci ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654447

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that primarily affects the hippocampus. Since hippocampal studies have highlighted a differential subregional regulation along its longitudinal axis, a more detailed analysis addressing subregional changes along the longitudinal hippocampal axis has the potential to provide new relevant biomarkers. This study included structural brain MRI data of 583 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Cognitively normal (CN) subjects, mild cognitively impaired (MCI) subjects and AD patients were conveniently selected considering the age and sex match between clinical groups. Structural MRI acquisitions were pre-processed and analysed with a new longitudinal axis segmentation method, dividing the hippocampus in three subdivisions (anterior, intermediate, and posterior). When normalizing the volume of hippocampal sub-divisions to total hippocampus, the posterior hippocampus negatively correlates with age only in CN subjects (r = -.31). The longitudinal ratio of hippocampal atrophy (anterior sub-division divided by the posterior one) shows a significant increase with age only in CN (r = .25). Overall, in AD, the posterior hippocampus is predominantly atrophied early on. Consequently, the anterior/posterior hippocampal ratio is an AD differentiating metric at early disease stages with potential for diagnostic and prognostic applications.

2.
Nat Neurosci ; 26(6): 1021-1031, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37188873

RESUMO

Early Alzheimer's disease (AD) is associated with hippocampal hyperactivity and decreased sleep quality. Here we show that homeostatic mechanisms transiently counteract the increased excitatory drive to CA1 neurons in AppNL-G-F mice, but that this mechanism fails in older mice. Spatial transcriptomics analysis identifies Pmch as part of the adaptive response in AppNL-G-F mice. Pmch encodes melanin-concentrating hormone (MCH), which is produced in sleep-active lateral hypothalamic neurons that project to CA1 and modulate memory. We show that MCH downregulates synaptic transmission, modulates firing rate homeostasis in hippocampal neurons and reverses the increased excitatory drive to CA1 neurons in AppNL-G-F mice. AppNL-G-F mice spend less time in rapid eye movement (REM) sleep. AppNL-G-F mice and individuals with AD show progressive changes in morphology of CA1-projecting MCH axons. Our findings identify the MCH system as vulnerable in early AD and suggest that impaired MCH-system function contributes to aberrant excitatory drive and sleep defects, which can compromise hippocampus-dependent functions.


Assuntos
Doença de Alzheimer , Hormônios Hipotalâmicos , Camundongos , Animais , Doença de Alzheimer/genética , Neurônios/fisiologia , Hormônios Hipofisários , Sono , Camundongos Transgênicos
3.
Neurobiol Aging ; 117: 1-11, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35640459

RESUMO

Our study compared brain MRI with neuropathological findings in patients with primary age-related tauopathy (PART) and Alzheimer's disease (AD), while assessing the relationship between brain atrophy and clinical impairment. We analyzed 233 participants: 32 with no plaques ("definite" PART-BRAAK stage higher than 0 and CERAD 0), and 201 cases within the AD spectrum, with 25 with sparse (CERAD 1), 76 with moderate (CERAD 2), and 100 with severe (CERAD 3) degrees of neuritic plaques. Upon correcting for age, sex, and age difference at MRI and death, there were significantly higher levels of atrophy in CERAD 3 compared to CERAD 1-2 and a trend compared to PART (p = 0.06). In the anterior temporal region, there was a trend for higher levels of atrophy in PART compared to Alzheimer's disease spectrum cases with CERAD 1 (p = 0.08). We then assessed the correlation between regional brain atrophy and CDR sum of boxes score for PART and AD, and found that overall cognition deficits are directly correlated with regional atrophy in the AD continuum, but not in definite PART. We further observed correlations between regional brain atrophy with multiple neuropsychological metrics in AD, with PART showing specific correlations between language deficits and anterior temporal atrophy. Overall, these findings support PART as an independent pathologic process from AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Tauopatias , Doença de Alzheimer/patologia , Atrofia/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Testes Neuropsicológicos , Placa Amiloide/patologia , Tauopatias/diagnóstico por imagem , Tauopatias/patologia
4.
Cell Rep ; 30(12): 4197-4208.e6, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209478

RESUMO

Phosphatidic acid (PA) is a signaling lipid involved in the modulation of synaptic structure and functioning. Based on previous work showing a decreasing PA gradient along the longitudinal axis of the rodent hippocampus, we asked whether the dorsal hippocampus (DH) and the ventral hippocampus (VH) are differentially affected by PA modulation. Here, we show that phospholipase D1 (PLD1) is a major hippocampal PA source, compared to PLD2, and that PLD1 ablation affects predominantly the lipidome of the DH. Moreover, Pld1 knockout (KO) mice show specific deficits in novel object recognition and social interaction and disruption in the DH-VH dendritic arborization differentiation in CA1/CA3 pyramidal neurons. Also, Pld1 KO animals present reduced long-term depression (LTD) induction and reduced GluN2A and SNAP-25 protein levels in the DH. Overall, we observe that PLD1-derived PA reduction leads to differential lipid signatures along the longitudinal hippocampal axis, predominantly affecting DH organization and functioning.


Assuntos
Deleção de Genes , Hipocampo/enzimologia , Hipocampo/fisiologia , Fosfolipase D/metabolismo , Animais , Dendritos/metabolismo , Lipidômica , Depressão Sináptica de Longo Prazo , Camundongos Knockout , Teste de Campo Aberto , Ácidos Fosfatídicos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Comportamento Social , Proteína 25 Associada a Sinaptossoma/metabolismo , Análise e Desempenho de Tarefas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA