Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1405842, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993498

RESUMO

Sunflower (Helianthus annuus L.), a vital crop for global vegetable oil production, encounters sustainability challenges in its cultivation. This study assesses the effects of incorporating a winter cover crop (CC), Avena sativa (L.), on the subsequent growth of sunflower crops and the vitality of their rhizosphere microbial communities over a two-year period. It examines the impact of two methods for suppressing winter CC-chemical suppression using glyphosate and mechanical suppression via rolling-both with and without the addition of phosphorus (P) starter fertilizer. These approaches are evaluated in comparison to the regional best management practices for sunflower cultivation, which involve a preparatory chemical fallow period and the subsequent application of starter P fertilizer. The methodology utilized Illumina sequencing for the analysis of rhizosphere bacterial 16S rRNA genes and fungal internal transcribed spacer (ITS) amplicons. Findings indicate a significant improvement (9-37%) in sunflower growth parameters (plant height, stem diameter, head diameter, and head dry weight) when cultivated after glyphosate-suppressed winter CC compared to the chemical fallows. Conversely, rolling of winter CC generally negatively affected sunflower growth. Rhizosphere bacterial communities following chemical suppression of winter CC showed greater Pielou's evenness, indicating a uniform distribution of species. In general, this treatment had more detrimental effects on beneficial sunflower rhizosphere bacteria such as Hymenobacter and Pseudarthrobacter than rolling of the winter CC, suggesting that the overall effect on sunflower growth may be mitigated by the redundancy within the bacterial community. As for fungal diversity, measured by the Chao-1 index, it increased in sunflowers planted after winter CC and receiving P fertilization, underscoring nutrient management's role in microbial community structure. Significant positive correlations between fungal diversity and sunflower growth parameters at the reproductive stage were observed (r = 0.41-0.72; p < 0.05), highlighting the role of fungal communities in plant fitness. The study underscores the positive effects of winter CC inclusion and management for enhancing sunflower cultivation while promoting beneficial microbes in the crop's rhizosphere. We advocate for strategic winter CC species selection, optimization of mechanical suppression techniques, and tailored phosphorus fertilization of sunflower to foster sustainable agriculture.

2.
Trends Microbiol ; 32(5): 415-418, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38519354

RESUMO

Approaches to rapidly collecting global biodiversity data are increasingly important, but biodiversity blind spots persist. We organized a three-day Datathon event to improve the openness of local biodiversity data and facilitate data reuse by local researchers. The first Datathon, organized among microbial ecologists in Uruguay and Argentina assembled the largest microbiome dataset in the region to date and formed collaborative consortia for microbiome data synthesis.


Assuntos
Biodiversidade , Ecologia , Microbiota , Argentina , Uruguai
3.
Rev. argent. microbiol ; 54(1): 51-60, mar. 2022. graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1407166

RESUMO

Resumen La inclusión de cultivos de cobertura invernales (CCI) en un sistema de siembra directa (SD) en reemplazo del barbecho constituye una alternativa promisoria para mejorar la salud del suelo y contribuir a la sustentabilidad ambiental de los sistemas agrícolas. Esta revisión ofrece un panorama integral de los efectos sobre el microbioma del suelo que tiene la introducción de CCI en rotación con cultivos de verano en sistemas de SD vs. el barbecho desnudo. Se realizó una búsqueda sistemática de la literatura que reporta los efectos de los CCI sobre los parámetros de abundancia, actividad y diversidad microbiana del suelo. Combinando 7 criterios de búsqueda se seleccionaron y analizaron 22 trabajos. El conjunto de resultados de esos trabajos muestra que la actividad enzimática del suelo se ve favorecida con la inclusión de CCI en la rotación, principalmente si estos se componen de leguminosas y mezclas de especies. Más de la mitad de esos trabajos reportan una mayor biomasa microbiana con CCI que con barbecho. Además, se advierte que los efectos de los CCI sobre los parámetros microbianos son independientes de la duración de los ensayos. Sin embargo, aún se necesitan más investigaciones básicas que permitan reducir la heterogeneidad entre estudios y comprender las complejas interacciones que ocurren entre los CCI y el microbioma del suelo.


Abstract The inclusion of winter cover crops (WCC) in no-till (NT) systems in replacement of bare fallow is a promising alternative to improve soil health and consequently, contribute to environmental sustainability of agricultural systems. This review provides a comprehensive evaluation of the effects of the use of WCC in rotation with summer cash crops under NT systems on the soil microbiome versus bare fallows. A systematic literature search was conducted to evaluate the impact of WCC on microbial parameters indicative of abundance, activity and diversity. Twenty-two papers were selected based on seven combined criteria. The results of this review show that enzyme activities in soil are enhanced with the inclusion of WCC in the rotation, particularly those that include legumes and mix of species. ln general, more than half of the analyzed papers report higher microbial biomass in soils with WCC than in bare fallow. Interestingly, the effects of WCC on microbial parameters are independent of the duration of the experiments. However, more basic research is necessary to reduce the heterogeneity of the studies and to better understand the complexity of the interactions between WCC and the soil microbiome.

4.
Rev Argent Microbiol ; 54(1): 57-70, 2022.
Artigo em Espanhol | MEDLINE | ID: mdl-33941408

RESUMO

The inclusion of winter cover crops (WCC) in no-till (NT) systems in replacement of bare fallow is a promising alternative to improve soil health and consequently, contribute to environmental sustainability of agricultural systems. This review provides a comprehensive evaluation of the effects of the use of WCC in rotation with summer cash crops under NT systems on the soil microbiome versus bare fallows. A systematic literature search was conducted to evaluate the impact of WCC on microbial parameters indicative of abundance, activity and diversity. Twenty-two papers were selected based on seven combined criteria. The results of this review show that enzyme activities in soil are enhanced with the inclusion of WCC in the rotation, particularly those that include legumes and mix of species. In general, more than half of the analyzed papers report higher microbial biomass in soils with WCC than in bare fallow. Interestingly, the effects of WCC on microbial parameters are independent of the duration of the experiments. However, more basic research is necessary to reduce the heterogeneity of the studies and to better understand the complexity of the interactions between WCC and the soil microbiome.


Assuntos
Microbiota , Solo , Agricultura/métodos , Produtos Agrícolas , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA