Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Mater Lett ; 6(2): 366-374, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38333600

RESUMO

Carbazole-based self-assembled monolayers (PACz-SAMs), anchored via their phosphonic acid group on a transparent conductive oxide (TCO), have demonstrated excellent performance as hole-selective layers in perovskite/silicon tandem solar cells. Yet, whereas different PACz-SAMs have been explored, the role of the TCO, and specifically its microstructure, on the hole transport properties of the TCO/PACz-SAMs stack has been largely overlooked. Here, we demonstrate that the TCO microstructure directly impacts the work function (WF) shift after SAM anchoring and is responsible for WF variations at the micro/nanoscale. Specifically, we studied Sn-doped In2O3 (ITO) substrates with amorphous and polycrystalline (featuring either nanoscale- or microscale-sized grains) microstructures before and after 2PACz-SAMs and NiOx/2PACz-SAMs anchoring. With this, we established a direct correlation between the ITO crystal grain orientation and 2PACz-SAMs local potential distribution, i.e., the WF. Importantly, these variations vanish for amorphous oxides (either in the form of amorphous ITO or when adding an amorphous NiOx buffer layer), where a homogeneous surface potential distribution is found. These findings highlight the importance of TCO microstructure tuning, to enable both high mobility and broadband transparent electrodes while ensuring uniform WF distribution upon application of hole transport SAMs, both critical for enhanced device performance.

2.
Chem Mater ; 36(3): 1728-1736, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38370282

RESUMO

Theoretical studies have identified cesium titanium bromide (Cs2TiBr6), a vacancy-ordered double perovskite, as a promising lead-free and earth-abundant candidate to replace Pb-based perovskites in photovoltaics. Our research is focused on overcoming the limitations associated with the current Cs2TiBr6 syntheses, which often involve high-vacuum and high-temperature evaporation techniques, high-energy milling, or intricate multistep solution processes conducted under an inert atmosphere, constraints that hinder industrial scalability. This study presents a straightforward, low-energy, and scalable solution procedure using microwave radiation to induce the formation of highly crystalline Cs2TiBr6 in a polar solvent. This methodology, where the choice of the solvent plays a crucial role, not only reduces the energy costs associated with perovskite production but also imparts exceptional stability to the resulting solid, in comparison with previous reports. This is a critical prerequisite for any technological advancement. The low-defective material demonstrates unprecedented structural stability under various stimuli such as moisture, oxygen, elevated temperatures (over 130 °C), and continuous exposure to white light illumination. In summary, our study represents an important step forward in the efficient and cost-effective synthesis of Cs2TiBr6, offering a compelling solution for the development of eco-friendly, earth-abundant Pb-free perovskite materials.

3.
ACS Appl Mater Interfaces ; 15(27): 32621-32628, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37368062

RESUMO

Electron transport layers (ETL) based on tin(IV) oxide (SnO2) are recurrently employed in perovskite solar cells (PSCs) by many deposition techniques. Pulsed laser deposition (PLD) offers a few advantages for the fabrication of such layers, such as being compatible with large scale, patternable, and allowing deposition at fast rates. However, a precise understanding of how the deposition parameters can affect the SnO2 film, and as a consequence the solar cell performance, is needed. Herein, we use a PLD tool equipped with a droplet trap to minimize the number of excess particles (originated from debris) reaching the substrate, and we show how to control the PLD chamber pressure to obtain surfaces with very low roughness and how the concentration of oxygen in the background gas can affect the number of oxygen vacancies in the film. Using optimized deposition conditions, we obtained solar cells in the n-i-p configuration employing methylammonium lead iodide perovskite as the absorber layer with power conversion efficiencies exceeding 18% and identical performance to devices having the more typical atomic layer deposited SnO2 ETL.

4.
Opt Express ; 31(5): 8775-8784, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36859985

RESUMO

Transparent Conducting Oxides (TCOs) exhibit a large and ultrafast intensity-dependent refractive index in their Epsilon-Near-Zero (ENZ) spectral region, which depends dramatically on the material properties and measurement arrangement conditions. Therefore, attempts to optimize the nonlinear response of ENZ TCOs usually involve extensive nonlinear optical measurements. In this work, we show that significant experimental work can be avoided by carrying out an analysis of the material's linear optical response. The analysis accounts for the impact of thickness-dependent material parameters on the absorption and field intensity enhancement under different measurement conditions and estimates the incidence angle required for achieving the maximum nonlinear response for a given TCO film. We perform measurements of angle-dependent and intensity-dependent nonlinear transmittance for Indium-Zirconium Oxide (IZrO) thin films with different thicknesses and demonstrate a good agreement between the experiment and theory. Our results also indicate that the film thickness and the excitation angle of incidence can be adjusted simultaneously to optimize the nonlinear optical response, allowing a flexible design of TCO-based highly nonlinear optical devices.

5.
Chem Mater ; 33(18): 7417-7422, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34602745

RESUMO

Cs2AgBiBr6 has been proposed as a promising lead-free and stable double perovskite alternative to hybrid and lead-based perovskites. However, the low solubility of precursors during wet synthesis, or the distinct volatility of components during evaporation, results in complex multistep synthesis approaches, hampering the widespread employment of Cs2AgBiBr6 films. Here, we present pulsed laser deposition of Cs2AgBiBr6 films as a dry, single-step and single-source deposition approach for high-quality film formation. Cs2AgBiBr6 powders were prepared by mechanochemical synthesis and pressed into a solid target maintaining phase purity. Controlled laser ablation of the double perovskite target in vacuum and a substrate temperature of 200 °C results in the formation of highly crystalline Cs2AgBiBr6 films. We discuss the importance of deposition pressure to achieve stoichiometric transfer and of substrate temperature during PLD growth to obtain high-quality Cs2AgBiBr6 films with grain sizes > 200 nm. This work demonstrates the potential of PLD, an established technique in the semiconductor industry, to deposit complex halide perovskite materials while being compatible with optoelectronic device fabrication, such as UV and X-ray detectors.

6.
ACS Appl Nano Mater ; 4(8): 8600-8610, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34485847

RESUMO

Co-axial electrospinning was applied for the structuring of non-woven webs of TiO2 nanofibers loaded with Ag, Au, and CuO nanoparticles. The composite layers were tested in an electrochromic half-cell assembly. A clear correlation between the nanoparticle composition and electrochromic effect in the nanofibrous composite is observed: TiO2 loaded with Ag reveals a black-brown color, Au shows a dark-blue color, and CuO shows a dark-green color. For electrochromic applications, the Au/TiO2 layer is the most promising choice, with a color modulation time of 6 s, transmittance modulation of 40%, coloration efficiency of 20 cm2/C, areal capacitance of 300 F/cm2, and cyclic stability of over 1000 cycles in an 18 h period. In this study, an unexplored path for the rational design of TiO2-based electrochromic device is offered with unique color-switching and optical efficiency gained by the fibrous layer. It is also foreseen that co-axial electrospinning can be an alternative nanofabrication technique for smart colored windows.

7.
J Phys Chem C Nanomater Interfaces ; 122(31): 17612-17620, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30258525

RESUMO

Transparent conductive oxides (TCOs) are essential in technologies coupling light and electricity. For Sn-based TCOs, oxygen deficiencies and undercoordinated Sn atoms result in an extended density of states below the conduction band edge. Although shallow states provide free carriers necessary for electrical conductivity, deeper states inside the band gap are detrimental to transparency. In zinc tin oxide (ZTO), the overall optoelectronic properties can be improved by defect passivation via annealing at high temperatures. Yet, the high thermal budget associated with such treatment is incompatible with many applications. Here, we demonstrate an alternative, low-temperature passivation method, which relies on cosputtering Sn-based TCOs with silicon dioxide (SiO2). Using amorphous ZTO and amorphous/polycrystalline tin dioxide (SnO2) as representative cases, we demonstrate through optoelectronic characterization and density functional theory simulations that the SiO2 contribution is twofold. First, oxygen from SiO2 passivates the oxygen deficiencies that form deep defects in SnO2 and ZTO. Second, the ionization energy of the remaining deep defect centers is lowered by the presence of silicon atoms. Remarkably, we find that these ionized states do not contribute to sub-gap absorptance. This simple passivation scheme significantly improves the optical properties without affecting the electrical conductivity, hence overcoming the known transparency-conductivity trade-off in Sn-based TCOs.

8.
Sci Rep ; 7(1): 9085, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28831077

RESUMO

There is tremendous interest in reducing losses caused by the metal contacts in silicon photovoltaics, particularly the optical and resistive losses of the front metal grid. One commonly sought-after goal is the creation of high aspect-ratio metal fingers which provide an optically narrow and low resistance pathway to the external circuit. Currently, the most widely used metal contact deposition techniques are limited to widths and aspect-ratios of ~40 µm and ~0.5, respectively. In this study, we introduce the use of a micropatterned polydimethylsiloxane encapsulation layer to form narrow (~20 µm) microchannels, with aspect-ratios up to 8, on the surface of solar cells. We demonstrate that low temperature metal pastes, electroless plating and atomic layer deposition can all be used within the microchannels. Further, we fabricate proof-of-concept structures including simple planar silicon heterojunction and homojunction solar cells. While preliminary in both design and efficiency, these results demonstrate the potential of this approach and its compatibility with current solar cell architectures.

9.
ACS Appl Mater Interfaces ; 9(8): 7241-7248, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28151638

RESUMO

Two fundamental requirements of transparent conductive oxides are high conductivity and low optical absorptance, properties strongly dependent on the free-carrier concentration of the film. The free-carrier concentration is usually tuned by the addition of dopant atoms; which are commonly assumed to be uniformly distributed in the films or partially segregated at grain boundaries. Here, the combination of secondary ion mass spectroscopy at the nanometric scale (NanoSIMS) and Kelvin probe force microscopy (KPFM) allows direct imaging of boron-dopant distribution in polycrystalline zinc oxide (ZnO) films. This work demonstrates that the boron atoms have a bimodal spatial distribution within each grain of the ZnO films. NanoSIMS analysis shows that boron atoms are preferentially incorporated into one of the two sides of each ZnO grain. KPFM measurements confirm that boron atoms are electrically active, locally increasing the free-carrier concentration in the film. The proposed cause of this nonuniform dopant distribution is the different sticking coefficient of Zn adatoms on the two distinct surface terminations of the ZnO grains. The higher sticking coefficient of Zn on the c+ surface restricts the boron incorporation on this side of the grains, resulting in preferential boron incorporation on the c- side and causing the bimodal distribution.

10.
ACS Appl Mater Interfaces ; 8(27): 17260-7, 2016 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-27338079

RESUMO

Transition metal oxides (TMOs) are commonly used in a wide spectrum of device applications, thanks to their interesting electronic, photochromic, and electrochromic properties. Their environmental sensitivity, exploited for gas and chemical sensors, is however undesirable for application in optoelectronic devices, where TMOs are used as charge injection or extraction layers. In this work, we first study the coloration of molybdenum and tungsten oxide layers, induced by thermal annealing, Ar plasma exposure, or transparent conducting oxide overlayer deposition, typically used in solar cell fabrication. We then propose a discoloration method based on an oxidizing CO2 plasma treatment, which allows for a complete bleaching of colored TMO films and prevents any subsequent recoloration during following cell processing steps. Then, we show that tungsten oxide is intrinsically more resilient to damage induced by Ar plasma exposure as compared to the commonly used molybdenum oxide. Finally, we show that parasitic absorption in TMO-based transparent electrodes, as used for semitransparent perovskite solar cells, silicon heterojunction solar cells, or perovskite/silicon tandem solar cells, can be drastically reduced by replacing molybdenum oxide with tungsten oxide and by applying a CO2 plasma pretreatment prior to the transparent conductive oxide overlayer deposition.

11.
Materials (Basel) ; 8(2): 561-574, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28787957

RESUMO

Hydrogen doped In2O3 thin films were prepared by room temperature sputter deposition with the addition of H2O to the sputter gas. By subsequent vacuum annealing, the films obtain high mobility up to 90 cm²/Vs. The films were analyzed in situ by X-ray photoelectron spectroscopy (XPS) and ex situ by X-ray diffraction (XRD), optical transmission and Hall effect measurements. Furthermore, we present results from in situ Hall effect measurements during vacuum annealing of In2O3:H films, revealing distinct dependence of carrier concentration and mobility with time at different annealing temperatures. We suggest hydrogen passivation of grain boundaries as the main reason for the high mobility obtained with In2O3:H films.

12.
Nanoscale ; 2(10): 2275-80, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20721398

RESUMO

We present a quantitative analysis of the steady-state electronic transport in a resistive switching device. The device is composed of a thin film of Ag(2)S (solid electrolyte) contacted by a Pt nano-contact acting as ion-blocking electrode, and a large-area Ag reference electrode. When applying a bias voltage both ionic and electronic transport occurs, and depending on the polarity it causes an accumulation of ions around the nano-contact. At small applied voltages (pre-switching) we observed this as a strongly nonlinear current-voltage curve, which is modeled using the Hebb-Wagner treatment for polarization of a mixed conductor. This model correctly describes the transport of the electrons within the polarized solid electrolyte in the steady-state up until the resistance switching, covering the entire range of non-stoichiometries, and including the supersaturation range just before the deposition of elemental silver. In this way, it is a step towards a quantitative understanding of the processes that lead to resistance switching.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA