Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Lett ; 588: 216797, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38462032

RESUMO

Induction of pyroptosis is proposed as a promising strategy for the treatment of hematological malignancies, but little is known. In the present study, we find clioquinol (CLQ), an anti-parasitic drug, induces striking myeloma and leukemia cell pyroptosis on a drug screen. RNA sequencing reveals that the interferon-inducible genes IFIT1 and IFIT3 are markedly upregulated and are essential for CLQ-induced GSDME activation and cell pyroptosis. Specifically, IFIT1 and IFIT3 form a complex with BAX and N-GSDME therefore directing N-GSDME translocalization to mitochondria and increasing mitochondrial membrane permeabilization and triggering pyroptosis. Furthermore, venetoclax, an activator of BAX and an inhibitor of Bcl-2, displays strikingly synergistic effects with CLQ against leukemia and myeloma via pyroptosis. This study thus reveals a novel mechanism for mitochondrial GSDME in pyroptosis and it also illustrates that induction of IFIT1/T3 and inhibition of Bcl-2 orchestrate the treatment of leukemia and myeloma via pyroptosis.


Assuntos
Leucemia , Mieloma Múltiplo , Humanos , Piroptose , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Proteína X Associada a bcl-2/metabolismo , Mitocôndrias/metabolismo , Proteínas de Ligação a RNA/metabolismo , Leucemia/metabolismo , Caspase 3/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
2.
Eur Thyroid J ; 12(6)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38052158

RESUMO

Objective: Nonautoimmune hyperthyroidism (NAH) is rare and occurs due to a constitutively activating thyroid stimulating hormone receptor (TSHR) mutation. In contrast to other thyroid nodules, no further evaluation for malignancy is recommended for hot thyroid nodules. In the first model for NAH in mice nearly all homozygous mice had developed papillary thyroid cancer by 12 months of age. Methods: To further evaluate these mice, whole exome sequencing and phosphoproteome analysis were employed in a further generation of mice to identify any other mutations potentially responsible and to identify the pathways involved in thyroid carcinoma development. Results: Only three genes (Nrg1, Rrs1, Rasal2) were mutated in all mice examined, none of which were known primary drivers of papillary thyroid cancer development. Wild-type and homozygous TSHR D633H knockin mice showed distinct phosphoproteome profiles with an enrichment of altered phosphosites found in ERK/mitogen-activated protein kinase (MAPK) signaling. Most importantly, phosphosites with known downstream effects included BRAF p.S766, which forms an inhibitory site: a decrease of phosphorylation at this site suggests an increase in MEK/ERK pathway activation. The decreased phosphorylation at BRAF p.S766 would suggest decreased AMP-activated protein kinase (AMPK) signaling, which is supported by the decreased phosphorylation of STIM1 p.S257, a downstream AMPK target. Conclusion: The modified phosphoproteome profile of the homozygous mice in combination with human literature suggests a potential signaling pathway from constitutive TSHR signaling and cAMP activation to the activation of ERK/MAPK signaling. This is the first time that a specific mechanism has been identified for a possible involvement of TSH signaling in thyroid carcinoma development.


Assuntos
Neoplasias da Glândula Tireoide , Nódulo da Glândula Tireoide , Camundongos , Humanos , Animais , Câncer Papilífero da Tireoide/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Receptores da Tireotropina/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Transdução de Sinais/genética , Neoplasias da Glândula Tireoide/genética , Tireotropina/metabolismo
3.
Eur Thyroid J ; 12(6)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855416

RESUMO

Objective: Nonautoimmune hyperthyroidism (NAH) is rare and occurs due to a constitutively activating thyroid stimulating hormone receptor (TSHR) mutation. In contrast to other thyroid nodules, no further evaluation for malignancy is recommended for hot thyroid nodules. In the first model for NAH in mice nearly all homozygous mice had developed papillary thyroid cancer by 12 months of age. Methods: To further evaluate these mice, whole exome sequencing and phosphoproteome analysis were employed in a further generation of mice to identify any other mutations potentially responsible and to identify the pathways involved in thyroid carcinoma development. Results: Only three genes (Nrg1, Rrs1, Rasal2) were mutated in all mice examined, none of which were known primary drivers of papillary thyroid cancer development. Wild-type and homozygous TSHR D633H knockin mice showed distinct phosphoproteome profiles with an enrichment of altered phosphosites found in ERK/mitogen-activated protein kinase (MAPK) signaling. Most importantly, phosphosites with known downstream effects included BRAF p.S766, which forms an inhibitory site: a decrease of phosphorylation at this site suggests an increase in MEK/ERK pathway activation. The decreased phosphorylation at BRAF p.S766 would suggest decreased AMP-activated protein kinase (AMPK) signaling, which is supported by the decreased phosphorylation of STIM1 p.S257, a downstream AMPK target. Conclusion: The modified phosphoproteome profile of the homozygous mice in combination with human literature suggests a potential signaling pathway from constitutive TSHR signaling and cAMP activation to the activation of ERK/MAPK signaling. This is the first time that a specific mechanism has been identified for a possible involvement of TSH signaling in thyroid carcinoma development.


Assuntos
Neoplasias da Glândula Tireoide , Nódulo da Glândula Tireoide , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Receptores da Tireotropina/genética , Transdução de Sinais/genética , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Tireotropina/metabolismo
4.
J Biol Chem ; 299(5): 104675, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37028761

RESUMO

MafA and c-Maf are close members of the Maf transcription factor family and indicators of poor prognosis of multiple myeloma (MM). Our previous study finds that the ubiquitin ligase HERC4 induces c-Maf degradation but stabilizes MafA, and the mechanism is elusive. In the present study, we find that HERC4 interacts with MafA and mediates its K63-linked polyubiquitination at K33. Moreover, HERC4 inhibits MafA phosphorylation and its transcriptional activity triggered by glycogen synthase kinase 3ß (GSK3ß). The K33R MafA variant prevents HERC4 from inhibiting MafA phosphorylation and increases MafA transcriptional activity. Further analyses reveal that MafA can also activate the STAT3 signaling, but it is suppressed by HERC4. Lastly, we demonstrate that lithium chloride, a GSK3ß inhibitor, can upregulate HERC4 and synergizes dexamethasone, a typical anti-MM drug, in inhibiting MM cell proliferation and xenograft growth in nude mice. These findings thus highlight a novel regulation of MafA oncogenic activity in MM and provide the rationale by targeting HERC4/GSK3ß/MafA for the treatment of MM.


Assuntos
Glicogênio Sintase Quinase 3 beta , Fatores de Transcrição Maf Maior , Mieloma Múltiplo , Poliubiquitina , Ubiquitina-Proteína Ligases , Ubiquitinação , Animais , Humanos , Camundongos , Proliferação de Células , Dexametasona/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Cloreto de Lítio/farmacologia , Fatores de Transcrição Maf Maior/antagonistas & inibidores , Fatores de Transcrição Maf Maior/metabolismo , Camundongos Nus , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Fosforilação , Poliubiquitina/metabolismo , Fator de Transcrição STAT3/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Mol Cancer Res ; 21(1): 36-50, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36214668

RESUMO

The ability of a patient tumor to engraft an immunodeficient mouse is the strongest known independent indicator of poor prognosis in early-stage non-small cell lung cancer (NSCLC). Analysis of primary NSCLC proteomes revealed low-level expression of mitochondrial aconitase (ACO2) in the more aggressive, engrafting tumors. Knockdown of ACO2 protein expression transformed immortalized lung epithelial cells, whereas upregulation of ACO2 in transformed NSCLC cells inhibited cell proliferation in vitro and tumor growth in vivo. High level ACO2 increased iron response element binding protein 1 (IRP1) and the intracellular labile iron pool. Impaired cellular proliferation associated with high level ACO2 was reversed by treatment of cells with an iron chelator, whereas increased cell proliferation associated with low level ACO2 was suppressed by treatment of cells with iron. Expression of CDGSH iron-sulfur (FeS) domain-containing protein 1 [CISD1; also known as mitoNEET (mNT)] was modulated by ACO2 expression level and inhibition of mNT by RNA interference or by treatment of cells with pioglitazone also increased iron and cell death. Hence, ACO2 is identified as a regulator of iron homeostasis and mNT is implicated as a target in aggressive NSCLC. IMPLICATIONS: FeS cluster-associated proteins including ACO2, mNT (encoded by CISD1), and IRP1 (encoded by ACO1) are part of an "ACO2-Iron Axis" that regulates iron homeostasis and is a determinant of a particularly aggressive subset of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Ferro/metabolismo , Aconitato Hidratase/genética , Aconitato Hidratase/metabolismo , Homeostase , Proteínas de Membrana/metabolismo , Proteínas de Ligação ao Ferro
6.
Acta Neuropathol ; 144(5): 1027-1048, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36070144

RESUMO

Histone H3 mutations at amino acids 27 (H3K27M) and 34 (H3G34R) are recurrent drivers of pediatric-type high-grade glioma (pHGG). H3K27M mutations lead to global disruption of H3K27me3 through dominant negative PRC2 inhibition, while H3G34R mutations lead to local losses of H3K36me3 through inhibition of SETD2. However, their broader oncogenic mechanisms remain unclear. We characterized the H3.1K27M, H3.3K27M and H3.3G34R interactomes, finding that H3K27M is associated with epigenetic and transcription factor changes; in contrast H3G34R removes a break on cryptic transcription, limits DNA methyltransferase access, and alters mitochondrial metabolism. All 3 mutants had altered interactions with DNA repair proteins and H3K9 methyltransferases. H3K9me3 was reduced in H3K27M-containing nucleosomes, and cis-H3K9 methylation was required for H3K27M to exert its effect on global H3K27me3. H3K9 methyltransferase inhibition was lethal to H3.1K27M, H3.3K27M and H3.3G34R pHGG cells, underscoring the importance of H3K9 methylation for oncohistone-mutant gliomas and suggesting it as an attractive therapeutic target.


Assuntos
Glioma , Histonas , Aminoácidos/genética , Criança , DNA , Glioma/genética , Glioma/metabolismo , Histonas/genética , Humanos , Mutação/genética , Nucleossomos , Fatores de Transcrição/genética
8.
ACS Chem Biol ; 17(6): 1472-1484, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35613471

RESUMO

A comprehensive analysis of the phosphoproteome is essential for understanding molecular mechanisms of human diseases. However, current tools used to enrich phosphotyrosine (pTyr) are limited in their applicability and scope. Here, we engineered new superbinder Src-Homology 2 (SH2) domains that enrich diverse sets of pTyr-peptides. We used phage display to select a Fes-SH2 domain variant (superFes; sFes1) with high affinity for pTyr and solved its structure bound to a pTyr-peptide. We performed systematic structure-function analyses of the superbinding mechanisms of sFes1 and superSrc-SH2 (sSrc1), another SH2 superbinder. We grafted the superbinder motifs from sFes1 and sSrc1 into 17 additional SH2 domains and confirmed increased binding affinity for specific pTyr-peptides. Using mass spectrometry (MS), we demonstrated that SH2 superbinders have distinct specificity profiles and superior capabilities to enrich pTyr-peptides. Finally, using combinations of SH2 superbinders as affinity purification (AP) tools we showed that unique subsets of pTyr-peptides can be enriched with unparalleled depth and coverage.


Assuntos
Proteoma , Domínios de Homologia de src , Humanos , Espectrometria de Massas , Fosfotirosina/análise , Fosfotirosina/química , Fosfotirosina/metabolismo , Ligação Proteica , Proteoma/metabolismo
9.
J Mol Biol ; 434(13): 167636, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35595168

RESUMO

Proteome analysis revealed signatures of co-expressed upregulated metabolism proteins highly conserved between primary and non-small cell lung cancer (NSCLC) patient-derived xenograft tumors (Li et al. 2014, Nat. Communications 5:5469). The C10 signature is encoded by seven genes (ADSS, ATP2A2, CTPS1, IMPDH2, PKM2, PTGES3, SGPL1) and DNA alterations in C10-encoding genes are associated with longer survival in a subset of NSCLC. To explore the C10 signature as an oncogenic driver and address potential mechanisms of action, C10 protein expression and protein-protein interactions were determined. In independent NSCLC cohorts, the coordinated expression of C10 proteins was significant and mutations in C10 genes were associated with better outcome. Affinity purification-mass spectrometry and in vivo proximity-based biotin identification defined a C10 interactome involving 667 proteins including candidate drug targets and clusters associated with glycolysis, calcium homeostasis, and nucleotide and sphingolipid metabolism. DNA alterations in genes encoding C10 interactome components were also found to be associated with better survival. These data support the notion that the coordinated upregulation of the C10 signature impinges metabolic processes that collectively function as an oncogenic driver in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/genética , DNA , Humanos , Neoplasias Pulmonares/metabolismo , Proteoma/metabolismo , Proteômica/métodos
10.
J Clin Invest ; 132(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35362478

RESUMO

Dysregulation of Toll-like receptor (TLR) signaling contributes to the pathogenesis of autoimmune diseases. Here, we provide genetic evidence that tankyrase, a member of the poly(ADP-ribose) polymerase (PARP) family, negatively regulates TLR2 signaling. We show that mice lacking tankyrase in myeloid cells developed severe systemic inflammation with high serum inflammatory cytokine levels. We provide mechanistic evidence that tankyrase deficiency resulted in tyrosine phosphorylation and activation of TLR2 and show that phosphorylation of tyrosine 647 within the TIR domain by SRC and SYK kinases was critical for TLR2 stabilization and signaling. Last, we show that the elevated cytokine production and inflammation observed in mice lacking tankyrase in myeloid cells were dependent on the adaptor protein 3BP2, which is required for SRC and SYK activation. These data demonstrate that tankyrase provides a checkpoint on the TLR-mediated innate immune response.


Assuntos
Doenças Autoimunes , Inflamação , Tanquirases , Receptor 2 Toll-Like , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Doenças Autoimunes/genética , Inflamação/genética , Camundongos , Transdução de Sinais , Quinase Syk/metabolismo , Tanquirases/genética , Tanquirases/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo
11.
Nat Commun ; 13(1): 1811, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383171

RESUMO

Non-small cell lung cancer (NSCLC) is the leading cause of cancer deaths worldwide. Only a fraction of NSCLC harbor actionable driver mutations and there is an urgent need for patient-derived model systems that will enable the development of new targeted therapies. NSCLC and other cancers display profound proteome remodeling compared to normal tissue that is not predicted by DNA or RNA analyses. Here, we generate 137 NSCLC patient-derived xenografts (PDXs) that recapitulate the histology and molecular features of primary NSCLC. Proteome analysis of the PDX models reveals 3 adenocarcinoma and 2 squamous cell carcinoma proteotypes that are associated with different patient outcomes, protein-phosphotyrosine profiles, signatures of activated pathways and candidate targets, and in adenocarcinoma, stromal immune features. These findings portend proteome-based NSCLC classification and treatment and support the PDX resource as a viable model for the development of new targeted therapies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Xenoenxertos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos SCID , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Nat Cancer ; 3(5): 629-648, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35422502

RESUMO

Diffuse midline gliomas (DMGs) bearing driver mutations of histone 3 lysine 27 (H3K27M) are incurable brain tumors with unique epigenomes. Here, we generated a syngeneic H3K27M mouse model to study the amino acid metabolic dependencies of these tumors. H3K27M mutant cells were highly dependent on methionine. Interrogating the methionine cycle dependency through a short-interfering RNA screen identified the enzyme methionine adenosyltransferase 2A (MAT2A) as a critical vulnerability in these tumors. This vulnerability was not mediated through the canonical mechanism of MTAP deletion; instead, DMG cells have lower levels of MAT2A protein, which is mediated by negative feedback induced by the metabolite decarboxylated S-adenosyl methionine. Depletion of residual MAT2A induces global depletion of H3K36me3, a chromatin mark of transcriptional elongation perturbing oncogenic and developmental transcriptional programs. Moreover, methionine-restricted diets extended survival in multiple models of DMG in vivo. Collectively, our results suggest that MAT2A presents an exploitable therapeutic vulnerability in H3K27M gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Metionina Adenosiltransferase/metabolismo , Animais , Neoplasias Encefálicas/genética , Epigenoma , Glioma/genética , Histonas/genética , Metionina/genética , Camundongos
13.
Cancers (Basel) ; 13(20)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34680183

RESUMO

The Clinical Proteomic Tumor Analysis Consortium (CPTAC) has provided some of the most in-depth analyses of the phenotypes of human tumors ever constructed. Today, the majority of proteomic data analysis is still performed using software housed on desktop computers which limits the number of sequence variants and post-translational modifications that can be considered. The original CPTAC studies limited the search for PTMs to only samples that were chemically enriched for those modified peptides. Similarly, the only sequence variants considered were those with strong evidence at the exon or transcript level. In this multi-institutional collaborative reanalysis, we utilized unbiased protein databases containing millions of human sequence variants in conjunction with hundreds of common post-translational modifications. Using these tools, we identified tens of thousands of high-confidence PTMs and sequence variants. We identified 4132 phosphorylated peptides in nonenriched samples, 93% of which were confirmed in the samples which were chemically enriched for phosphopeptides. In addition, our results also cover 90% of the high-confidence variants reported by the original proteogenomics study, without the need for sample specific next-generation sequencing. Finally, we report fivefold more somatic and germline variants that have an independent evidence at the peptide level, including mutations in ERRB2 and BCAS1. In this reanalysis of CPTAC proteomic data with cloud computing, we present an openly available and searchable web resource of the highest-coverage proteomic profiling of human tumors described to date.

14.
J Mol Biol ; 433(8): 166880, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33617900

RESUMO

CBL is a RING type E3 ubiquitin ligase that functions as a negative regulator of tyrosine kinase signaling and loss of CBL E3 function is implicated in several forms of leukemia. The Src-like adaptor proteins (SLAP/SLAP2) bind to CBL and are required for CBL-dependent downregulation of antigen receptor, cytokine receptor, and receptor tyrosine kinase signaling. Despite the established role of SLAP/SLAP2 in regulating CBL activity, the nature of the interaction and the mechanisms involved are not known. To understand the molecular basis of the interaction between SLAP/SLAP2 and CBL, we solved the crystal structure of CBL tyrosine kinase binding domain (TKBD) in complex with SLAP2. The carboxy-terminal region of SLAP2 adopts an α-helical structure which binds in a cleft between the 4H, EF-hand, and SH2 domains of the TKBD. This SLAP2 binding site is remote from the canonical TKBD phospho-tyrosine peptide binding site but overlaps with a region important for stabilizing CBL in its autoinhibited conformation. In addition, binding of SLAP2 to CBL in vitro activates the ubiquitin ligase function of autoinhibited CBL. Disruption of the CBL/SLAP2 interface through mutagenesis demonstrated a role for this protein-protein interaction in regulation of CBL E3 ligase activity in cells. Our results reveal that SLAP2 binding to a regulatory cleft of the TKBD provides an alternative mechanism for activation of CBL ubiquitin ligase function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Proto-Oncogênicas c-cbl/química , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/química , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Ubiquitina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Sítios de Ligação , Regulação para Baixo , Humanos , Conformação Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-cbl/genética , Proteínas Proto-Oncogênicas pp60(c-src)/genética , Receptores Proteína Tirosina Quinases/metabolismo , Alinhamento de Sequência , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Domínios de Homologia de src
15.
Blood ; 137(11): 1478-1490, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32842143

RESUMO

The oncogenic transcription factor c-Maf has been proposed as an ideal therapeutic target for multiple myeloma (MM), but how to achieve it is still elusive. In the present study, we found the Otub1/c-Maf axis could be a potential target. Otub1, an OTU family deubiquitinase, was found to interact with c-Maf by mass spectrometry. Otub1 abrogates c-Maf K48-linked polyubiquitination, thus preventing its degradation and enhancing its transcriptional activity. Specifically, this deubiquitinating activity depends on its Lys71 and the N terminus but is independent of UBE2O, a known E2 of c-Maf. Otub1 promotes MM cell survival and MM tumor growth. In contrast, silence of Otub1 leads to c-Maf degradation and c-Maf-expressing MM cell apoptosis. Therefore, the Otub1/c-Maf axis could be a therapeutic target of MM. In order to explore this concept, we performed a c-Maf recognition element-driven luciferase-based screen against US Food and Drug Administration-approved drugs and natural products, from which the generic cardiac glycoside lanatoside C (LanC) is found to prevent c-Maf deubiquitination and induces its degradation by disrupting the interaction of Otub1 and c-Maf. Consequently, LanC inhibits c-Maf transcriptional activity, induces c-Maf-expressing MM cell apoptosis, and suppresses MM growth and prolongs overall survival of model mice, but without apparent toxicity. Therefore, the present study identifies Otub1 as a novel deubiquitinase of c-Maf and establishes that the Otub1/c-Maf axis is a potential therapeutic target for MM.


Assuntos
Antineoplásicos/farmacologia , Enzimas Desubiquitinantes/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-maf/metabolismo , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Descoberta de Drogas , Células HEK293 , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mieloma Múltiplo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos
16.
PLoS One ; 15(9): e0237981, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903271

RESUMO

Serine hydroxymethyltransferase 2 (SHMT2) converts serine plus tetrahydrofolate (THF) into glycine plus methylene-THF and is upregulated at the protein level in lung and other cancers. In order to better understand the role of SHMT2 in cancer a model system of HeLa cells engineered for inducible over-expression or knock-down of SHMT2 was characterized for cell proliferation and changes in metabolites and proteome as a function of SHMT2. Ectopic over-expression of SHMT2 increased cell proliferation in vitro and tumor growth in vivo. Knockdown of SHMT2 expression in vitro caused a state of glycine auxotrophy and accumulation of phosphoribosylaminoimidazolecarboxamide (AICAR), an intermediate of folate/1-carbon-pathway-dependent de novo purine nucleotide synthesis. Decreased glycine in the HeLa cell-based xenograft tumors with knocked down SHMT2 was potentiated by administration of the anti-hyperglycinemia agent benzoate. However, tumor growth was not affected by SHMT2 knockdown with or without benzoate treatment. Benzoate inhibited cell proliferation in vitro, but this was independent of SHMT2 modulation. The abundance of proteins of mitochondrial respiration complexes 1 and 3 was inversely correlated with SHMT2 levels. Proximity biotinylation in vivo (BioID) identified 48 mostly mitochondrial proteins associated with SHMT2 including the mitochondrial enzymes Acyl-CoA thioesterase (ACOT2) and glutamate dehydrogenase (GLUD1) along with more than 20 proteins from mitochondrial respiration complexes 1 and 3. These data provide insights into possible mechanisms through which elevated SHMT2 in cancers may be linked to changes in metabolism and mitochondrial function.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Glicina Hidroximetiltransferase/metabolismo , Neoplasias Pulmonares/patologia , Metaboloma , Proteoma/análise , Serina/metabolismo , Animais , Antifúngicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Glicina Hidroximetiltransferase/antagonistas & inibidores , Glicina Hidroximetiltransferase/genética , Células HeLa , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Domínios e Motivos de Interação entre Proteínas , Benzoato de Sódio/farmacologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Proteome Res ; 19(8): 3230-3237, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32539411

RESUMO

Data dependent acquisition (DDA) and data independent acquisition (DIA) are traditionally separate experimental paradigms in bottom-up proteomics. In this work, we developed a strategy combining the two experimental methods into a single LC-MS/MS run. We call the novel strategy data dependent-independent acquisition proteomics, or DDIA for short. Peptides identified from DDA scans by a conventional and robust DDA identification workflow provide useful information for interrogation of DIA scans. Deep learning based LC-MS/MS property prediction tools, developed previously, can be used repeatedly to produce spectral libraries facilitating DIA scan extraction. A complete DDIA data processing pipeline, including the modules for iRT vs RT calibration curve generation, DIA extraction classifier training, and false discovery rate control, has been developed. Compared to another spectral library-free method, DIA-Umpire, the DDIA method produced a similar number of peptide identifications, but nearly twice as many protein group identifications. The primary advantage of the DDIA method is that it requires minimal information for processing its data.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Cromatografia Líquida , Peptídeos , Proteínas
18.
J Proteome Res ; 19(3): 1029-1036, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32009416

RESUMO

The sequence database searching method is widely used in proteomics for peptide identification. To control the false discovery rate (FDR) of the searching results, the target-decoy method generates and searches a decoy database together with the target database. A known problem is that the target protein sequence database may contain numerous repeated peptides. The structures of these repeats are not preserved by most existing decoy generation algorithms. Previous studies suggest that such discrepancy between the target and decoy databases may lead to an inaccurate FDR estimation. Based on the de Bruijn graph model, we propose a new repeat-preserving algorithm to generate decoy databases. We prove that this algorithm preserves the structures of the repeats in the target database to a great extent. The de Bruijn method has been compared with a few other commonly used methods and demonstrated superior FDR estimation accuracy and an improved number of peptide identification.


Assuntos
Peptídeos , Espectrometria de Massas em Tandem , Algoritmos , Bases de Dados de Proteínas , Proteômica
19.
Nat Chem Biol ; 16(5): 577-586, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32094923

RESUMO

Receptor tyrosine kinases (RTKs) are transmembrane receptors of great clinical interest due to their role in disease. Historically, therapeutics targeting RTKs have been identified using in vitro kinase assays. Due to frequent development of drug resistance, however, there is a need to identify more diverse compounds that inhibit mutated but not wild-type RTKs. Here, we describe MaMTH-DS (mammalian membrane two-hybrid drug screening), a live-cell platform for high-throughput identification of small molecules targeting functional protein-protein interactions of RTKs. We applied MaMTH-DS to an oncogenic epidermal growth factor receptor (EGFR) mutant resistant to the latest generation of clinically approved tyrosine kinase inhibitors (TKIs). We identified four mutant-specific compounds, including two that would not have been detected by conventional in vitro kinase assays. One of these targets mutant EGFR via a new mechanism of action, distinct from classical TKI inhibition. Our results demonstrate how MaMTH-DS is a powerful complement to traditional drug screening approaches.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Inibidores de Proteínas Quinases/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular , Linhagem Celular Tumoral , DNA Nucleotidiltransferases/genética , Descoberta de Drogas , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Genes Reporter , Humanos , Luciferases/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Fosforilação/efeitos dos fármacos , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas/farmacologia , Estaurosporina/análogos & derivados , Estaurosporina/farmacologia
20.
J Biol Chem ; 295(7): 2084-2096, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31822558

RESUMO

The Maf proteins, including c-Maf, MafA, and MafB, are critical transcription factors in myelomagenesis. Previous studies demonstrated that Maf proteins are processed by the ubiquitin-proteasome pathway, but the mechanisms remain elusive. This study applied MS to identify MafB ubiquitination-associated proteins and found that the ubiquitin-specific protease USP7 was present in the MafB interactome. Moreover, USP7 also interacted with c-Maf and MafA and blocked their polyubiquitination and degradation. Consistently, knockdown of USP7 resulted in Maf protein degradation along with increased polyubiquitination levels. The action of USP7 thus promoted Maf transcriptional activity as evidenced by luciferase assays and by the up-regulation of the expression of Maf-modulated genes. Furthermore, USP7 was up-regulated in myeloma cells, and it was negatively associated with the survival of myeloma patients. USP7 promoted myeloma cell survival, and when it was inhibited by its specific inhibitor P5091, myeloma cell lines underwent apoptosis. These results therefore demonstrated that USP7 is a deubiquitinase of Maf proteins and promotes MM cell survival in association with Maf stability. Given the significance of USP7 and Maf proteins in myeloma genesis, targeting the USP7/Maf axle is a potential strategy to the precision therapy of MM.


Assuntos
Fatores de Transcrição Maf Maior/genética , Fator de Transcrição MafB/genética , Mieloma Múltiplo/genética , Proteínas Proto-Oncogênicas c-maf/genética , Peptidase 7 Específica de Ubiquitina/genética , Apoptose/efeitos dos fármacos , Carcinogênese/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Masculino , Mieloma Múltiplo/patologia , Poliubiquitina/genética , Intervalo Livre de Progressão , Proteólise/efeitos dos fármacos , Tiofenos/farmacologia , Peptidase 7 Específica de Ubiquitina/antagonistas & inibidores , Ubiquitinação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA