Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Biol Rev Camb Philos Soc ; 99(3): 950-964, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38305571

RESUMO

Cilia are widely present in metazoans and have various sensory and motor functions, including collection of particles through feeding currents in suspensivorous animals. Suspended particles occur at low densities and are too small to be captured individually, and therefore must be concentrated. Animals that feed on these particles have developed different mechanisms to encounter and capture their food. These mechanisms occur in three phases: (i) encounter; (ii) capture; and (iii) particle handling, which occurs by means of a cilia-generated current or the movement of capturing structures (e.g. tentacles) that transport the particle to the mouth. Cilia may be involved in any of these phases. Some cnidarians, as do other suspensivorous animals, utilise cilia in their feeding mechanisms. However, few studies have considered ciliary flow when examining the biomechanics of cnidarian feeding. Anthozoans (sessile cnidarians) are known to possess flow-promoting cilia, but these are absent in medusae. The traditional view is that jellyfish capture prey only by means of nematocysts (stinging structures) and mucus, and do not possess cilia that collect suspended particles. Herein, we first provide an overview of suspension feeding in invertebrates, and then critically analyse the presence, distribution, and function of cilia in the Cnidaria (mainly Medusozoa), with a focus on particle collection (suspension feeding). We analyse the different mechanisms of suspension feeding and sort them according to our proposed classification framework. We present a scheme for the phases of pelagic jellyfish suspension feeding based on this classification. There is evidence that cilia create currents but act only in phases 1 and 3 of suspension feeding in medusozoans. Research suggests that some scyphomedusae must exploit other nutritional sources besides prey captured by nematocysts and mucus, since the resources provided by this diet alone are insufficient to meet their energy requirements. Therefore, smaller particles and prey may be captured through other phase-2 mechanisms that could involve ciliary currents. We hypothesise that medusae, besides capturing prey by nematocysts (present in the tentacles and oral arms), also capture small particles with their cilia, therefore expanding their trophic niche and suggesting reinterpretation of the trophic role of medusoid cnidarians as exclusively plankton predators. We suggest further study of particle collection by ciliary action and its influence on the biomechanics of jellyfishes, to expand our understanding of the ecology of this group.


Assuntos
Cílios , Comportamento Alimentar , Animais , Cílios/fisiologia , Comportamento Alimentar/fisiologia , Cnidários/fisiologia
2.
Geobiology ; 22(1): e12577, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37750460

RESUMO

Unveiling the tempo and mode of animal evolution is necessary to understand the links between environmental changes and biological innovation. Although the earliest unambiguous metazoan fossils date to the late Ediacaran period, molecular clock estimates agree that the last common ancestor (LCA) of all extant animals emerged ~850 Ma, in the Tonian period, before the oldest evidence for widespread ocean oxygenation at ~635-560 Ma in the Ediacaran period. Metazoans are aerobic organisms, that is, they are dependent on oxygen to survive. In low-oxygen conditions, most animals have an evolutionarily conserved pathway for maintaining oxygen homeostasis that triggers physiological changes in gene expression via the hypoxia-inducible factor (HIFa). However, here we confirm the absence of the characteristic HIFa protein domain responsible for the oxygen sensing of HIFa in sponges and ctenophores, indicating the LCA of metazoans lacked the functional protein domain as well, and so could have maintained their transcription levels unaltered under the very low-oxygen concentrations of their environments. Using Bayesian relaxed molecular clock dating, we inferred that the ancestral gene lineage responsible for HIFa arose in the Mesoproterozoic Era, ~1273 Ma (Credibility Interval 957-1621 Ma), consistent with the idea that important genetic machinery associated with animals evolved much earlier than the LCA of animals. Our data suggest at least two duplication events in the evolutionary history of HIFa, which generated three vertebrate paralogs, products of the two successive whole-genome duplications that occurred in the vertebrate LCA. Overall, our results support the hypothesis of a pre-Tonian emergence of metazoans under low-oxygen conditions, and an increase in oxygen response elements during animal evolution.


Assuntos
Oxigênio , Vertebrados , Animais , Oxigênio/metabolismo , Teorema de Bayes , Vertebrados/metabolismo , Hipóxia , Filogenia , Evolução Biológica , Fósseis
3.
Sci Rep ; 13(1): 9760, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328506

RESUMO

Ephyrae, the early stages of scyphozoan jellyfish, possess a conserved morphology among species. However, ontogenetic transitions lead to morphologically different shapes among scyphozoan lineages, with important consequences for swimming biomechanics, bioenergetics and ecology. We used high-speed imaging to analyse biomechanical and kinematic variables of swimming in 17 species of Scyphozoa (1 Coronatae, 8 "Semaeostomeae" and 8 Rhizostomeae) at different developmental stages. Swimming kinematics of early ephyrae were similar, in general, but differences related to major lineages emerged through development. Rhizostomeae medusae have more prolate bells, shorter pulse cycles and higher swimming performances. Medusae of "Semaeostomeae", in turn, have more variable bell shapes and most species had lower swimming performances. Despite these differences, both groups travelled the same distance per pulse suggesting that each pulse is hydrodynamically similar. Therefore, higher swimming velocities are achieved in species with higher pulsation frequencies. Our results suggest that medusae of Rhizostomeae and "Semaeostomeae" have evolved bell kinematics with different optimized traits, rhizostomes optimize rapid fluid processing, through faster pulsations, while "semaeostomes" optimize swimming efficiency, through longer interpulse intervals that enhance mechanisms of passive energy recapture.


Assuntos
Hidrozoários , Cifozoários , Animais , Natação , Fenômenos Biomecânicos , Metabolismo Energético
4.
Mar Drugs ; 20(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36286438

RESUMO

Neuroinflammation is a condition associated with several types of dementia, such as Alzheimer's disease (AD), mainly caused by an inflammatory response to amyloid peptides that induce microglial activation, with subsequent cytokine release. Neuronal caspase-1 from inflammasome and cathepsin B are key enzymes mediating neuroinflammation in AD, therefore, revealing new molecules to modulate these enzymes may be an interesting approach to treat neurodegenerative diseases. In this study, we searched for new caspase-1 and cathepsin B inhibitors from five species of Brazilian marine invertebrates (four cnidarians and one echinoderm). The results show that the extract of the box jellyfish Chiropsalmus quadrumanus inhibits caspase-1. This extract was fractionated, and the products monitored for their inhibitory activity, until the obtention of a pure molecule, which was identified as trigonelline by mass spectrometry. Moreover, four extracts inhibit cathepsin B, and Exaiptasia diaphana was selected for subsequent fractionation and characterization, resulting in the identification of betaine as being responsible for the inhibitory action. Both molecules are already found in marine organisms, however, this is the first study showing a potent inhibitory effect on caspase-1 and cathepsin B activities. Therefore, these new prototypes can be considered for the enzyme inhibition and subsequent control of the neuroinflammation.


Assuntos
Doença de Alzheimer , Catepsina B , Humanos , Animais , Caspase 1/farmacologia , Inflamassomos , Microglia , Doenças Neuroinflamatórias , Organismos Aquáticos , Betaína , Citocinas , Peptídeos/farmacologia , Invertebrados , Peptídeos beta-Amiloides/farmacologia
5.
Tissue Cell ; 79: 101909, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36095932

RESUMO

Myxosporeans are a diverse group of microscopic cnidarians of wide distribution that evolved into a parasitic lifestyle. A new myxosporean species, Myxobolus sp., is herein described infecting the mandible of wild specimens of Synbranchus marmoratus, caught in the world's largest tropical wetland area, Pantanal, Brazil. Light, scanning, transmission electron microscopy and histological observations unveiled detailed taxonomic information of the new myxosporean cnidarian. Ultrastructural analysis revealed a detailed description of plasmodia structures which can be used for comparison with plasmodia from other species of myxobolids. Both histological and ultrastructural observations evidenced a connective tissue capsule surrounding the plasmodia of Myxobolus sp. as a histopathological host reaction to the infection of this parasitic cnidarian. Histology showed that tissue tropism of the new myxosporean occurs in a well-defined part of the mandible, with development of plasmodia occurring in the epidermis layer. Mature myxospores from the valvular view featured an ovoid shape and had a short prolongation of the spore valves in the posterior end. Myxospores measured 22.7 ± 1.2 µm (21.5-23.9 µm) in length, 12.5 ± 0.4 µm (12.1-12.9 µm) in width and 11.3 ± 0.5 (10.8-11.8 µm) in thickness. Polar capsules were pyriform equally-sized and measuring 4.6 ± 0.3 µm (3.9-4.3 µm) in length and 2.9 ± 0.1 µm in width (2.8-3.0 µm). Finally, this study substantiates the still hidden myxosporean diversity from South America.


Assuntos
Cnidários , Doenças dos Peixes , Myxobolus , Doenças Parasitárias em Animais , Smegmamorpha , Animais , Doenças Parasitárias em Animais/parasitologia , Áreas Alagadas , Brasil , Doenças dos Peixes/parasitologia , Filogenia , Myxobolus/ultraestrutura , Brânquias
6.
Mar Drugs, v. 20, 10, 614, set. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4678

RESUMO

Neuroinflammation is a condition associated with several types of dementia, such as Alzheimer’s disease (AD), mainly caused by an inflammatory response to amyloid peptides that induce microglial activation, with subsequent cytokine release. Neuronal caspase-1 from inflammasome and cathepsin B are key enzymes mediating neuroinflammation in AD, therefore, revealing new molecules to modulate these enzymes may be an interesting approach to treat eurodegenerative diseases. In this study, we searched for new caspase-1 and cathepsin B inhibitors from five species of Brazilian marine invertebrates (four cnidarians and one echinoderm). The results show that the extract of the box jellyfish Chiropsalmus quadrumanus inhibits caspase-1. This extract was fractionated, and the products monitored for their inhibitory activity, until the obtention of a pure molecule, which was identified as trigonelline by mass spectrometry. Moreover, four extracts inhibit cathepsin B, and Exaiptasia diaphana was selected for subsequent fractionation and characterization, resulting in the identification of betaine as being responsible for the inhibitory action. Both molecules are already found in marine organisms, however, this is the first study showing a potent inhibitory effect on caspase-1 and cathepsin B activities. Therefore, these new prototypes can be considered for the enzyme inhibition and subsequent control of the neuroinflammation.

7.
PeerJ ; 9: e11954, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34589293

RESUMO

Cryptic species have been detected across Metazoa, and while no apparent morphological features distinguish them, it should not impede taxonomists from formal descriptions. We accepted this challenge for the jellyfish genus Aurelia, which has a long and confusing taxonomic history. We demonstrate that morphological variability in Aurelia medusae overlaps across very distant geographic localities. Even though some morphological features seem responsible for most of the variation, regional geographic patterns of dissimilarities are lacking. This is further emphasized by morphological differences found when comparing lab-cultured Aurelia coerulea medusae with the diagnostic features in its recent redescription. Previous studies have also highlighted the difficulties in distinguishing Aurelia polyps and ephyrae, and their morphological plasticity. Therefore, mostly based on genetic data, we recognize 28 species of Aurelia, of which seven were already described, 10 are formally described herein, four are resurrected and seven remain undescribed. We present diagnostic genetic characters for all species and designate type materials for newly described and some resurrected species. Recognizing moon jellyfish diversity with formal names is vital for conservation efforts and other studies. This work clarifies the practical implications of molecular genetic data as diagnostic characters, and sheds light on the patterns and processes that generate crypsis.

8.
An Acad Bras Cienc ; 93(2): e20190574, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34076086

RESUMO

Ephyrae are the young scyphozoan jellyfishes that usually passes unnoticed, whereas their adult counterparts play major ecological roles and can negatively affect economic activities when they occur in high densities. We describe, for the first time, wild ephyrae of Lychnorhiza lucerna (Scyphozoa, Rhizostomeae) from the Patos Lagoon Estuary, Southern Brazil. A total of 10 ephyrae were found in salinities between 12 and 33 and temperatures between 16 and 27°C. The presence of digitata, eight oral arms and serrated tips on marginal lobes allowed species determination. Wild ephyrae were morphologically identical to laboratory-cultivated individuals. The youngest individual was about one to two days old, and the most developed one, between 12 and 14 days old. Recruitment of L. lucerna probably initiated during warmer months (December until February) because nine out of ten individuals were found in high temperature (> 20° C) and salinity (> 30) waters. On the other hand, a mid-winter occurrence of a single ephyra (T=16° C, S= 12) demonstrates that the species may support a considerable range of variation in the physical environment. We reinforce the importance of long-term studies to provide information about the species coupling with seasonal cycles and the dynamics of estuarine and coastal areas.


Assuntos
Cnidários , Cifozoários , Adulto , Animais , Brasil , Humanos , Salinidade , Temperatura
9.
Toxicon ; 199: 127-138, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34139257

RESUMO

Cnidarians are equipped with nematocysts, which are specialized organelles used to inoculate venom during prey capturing and defense. Their venoms are rich in toxins and a potential source of bioactive compounds, however, poorly explored so far. In this work, the activity of the methanolic extracts from the hydromedusa Olindias sambaquiensis and the cubozoan jellyfish Chiropsalmus quadrumanus were studied in sympathetic neurotransmission. For that, bisected rat vas deferens - a classic model of sympathetic neurotransmission - were incubated with the extracts for further myographic and histopathological analysis. The O. sambaquiensis extract, at 0.1 µg/mL, facilitated the neurogenic contractions of the noradrenergic-rich epididymal portion, while reducing the noradrenaline (NA) potency, which suggests an interaction with postsynaptic α1-adrenoceptors. On the other hand, a higher concentration (1 µg/mL) leads to time- and frequency-dependent blockade of nerve-evoked contractions without significantly changing the response to exogenous NA. In turn, the C. quadrumanus extract at 0.1 µg/mL induced blockade of nerve-evoked noradrenergic contractions while reducing the potency to exogenous NA. Both extracts did not affect the purinergic neurotransmission or induce muscle damages. Our results demonstrate that O. sambaquiensis and C. quadrumanus extracts significantly interfere with the noradrenergic neurotransmission without altering purinergic response or smooth muscle structure on rat vas deferens. Such results bring to light the pharmacological potential of O. sambaquiensis and C. quadrumanus molecules for therapeutics focusing on noradrenergic neurotransmission.


Assuntos
Hidrozoários , Cifozoários , Animais , Estimulação Elétrica , Masculino , Contração Muscular , Nematocisto , Norepinefrina , Extratos Vegetais , Ratos , Sistema Nervoso Simpático
10.
J Exp Zool B Mol Dev Evol ; 336(3): 191-197, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33819384

RESUMO

The developmental and evolutionary principles of coloniality in marine animals remain largely unexplored. Although many common traits have evolved independently in different groups of colonial animals, questions about their significance for colonial life histories remain unanswered. In 2018 (Nov. 25 - Dec. 8), the inaugural course on the Evolution of Coloniality and Modularity took place at the Center for Marine Biology of the University of São Paulo (CEBIMAR-USP), Brazil. During the intensive two-week graduate-level course, we addressed some of the historical ideas about animal coloniality by focal studies in bryozoans, tunicates, cnidarians, and sponges. We discussed many historical hypotheses and ways to test these using both extant and paleontological data, and we carried direct observations of animal colonies in the different phyla to address questions about coloniality. We covered topics related to multi-level selection theory and studied colonial traits, including modular miniaturization, polymorphism, brooding, and allorecognition. Course participants carried out short research projects using local species of animals to address questions on allorecognition and regeneration in ascidians and sponges, fusion and chimerism in anthoathecate hydrozoans, and evolution of polymorphism in bryozoans. Although many questions remain unanswered, this course served as a foundation to continue to develop a developmental and evolutionary synthesis of clonal and modular development in colonial marine organisms.


Assuntos
Invertebrados/anatomia & histologia , Invertebrados/crescimento & desenvolvimento , Animais , Organismos Aquáticos/crescimento & desenvolvimento , Organismos Aquáticos/fisiologia , Invertebrados/fisiologia
11.
Biomed Res Int ; 2021: 8855248, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33748281

RESUMO

Neurodegenerative diseases are one of the major causes of death worldwide, characterized by neurite atrophy, neuron apoptosis, and synapse loss. No effective treatment has been indicated for such diseases so far, and the search for new drugs is being increased in the last years. Animal venoms' secretion/venom can be an alternative for the discovery of new molecules, which could be the prototype for a new treatment. Here, we present the biochemical characterization and activity of the extract from the box jellyfish Chiropsalmus quadrumanus (Cq) on neurites. The Cq methanolic extract was obtained and incubated to human SH-SY5Y neurons, and neurite parameters were evaluated. The extract was tested in other cell types to check its cytotoxicity and was submitted to biochemical analysis by mass spectrometry in order to check its composition. We could verify that the Cq extract increased neurite outgrowth length and branching junctions, amplifying the contact between SH-SY5Y neurons, without affecting cell body and viability. The extract action was selective for neurons, as it did not cause any effects on other cell types, such as tumor line, nontumor line, and red blood cells. Moreover, mass spectrometry analysis revealed that there are no proteins but several low molecular mass compounds and peptides. Three peptides, characterized as cryptides, and 14 low molecular mass compounds were found to be related to cytoskeleton reorganization, cell membrane expansion, and antioxidant/neuroprotective activity, which act together to increase neuritogenesis. After this evaluation, we conclude that the Cq extract is a promising tool for neuronal connection recovery, an essential condition for the treatment of neurodegenerative diseases.


Assuntos
Misturas Complexas/farmacologia , Cubomedusas/química , Neuritos/metabolismo , Fármacos Neuroprotetores/farmacologia , Animais , Linhagem Celular Tumoral , Misturas Complexas/química , Humanos , Fármacos Neuroprotetores/química
12.
Microb Pathog ; 150: 104718, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33385492

RESUMO

A new cnidarian myxosporean infecting the spleen of an economic and ecological important bryconid fish (Salminus franciscanus) is described based on integrative taxonomic approach including morphological, ultrastructural, biological traits, geography, molecular data and phylogenetic analysis. In a total of thirty specimens examined, nineteen (63.3%) were infected by an undescribed parasite species belonging to the genus Myxobolus. Plasmodial development was asynchronous, with young development in the periphery and mature myxospores in the central area and without projections and microvilli in the plasmodial wall. Mature myxospores were ovoid in shape and measured 7.9 ± 0.2 µm (7.6-8.1 µm) in length and 5.4 ± 0.1 µm (5.0-5.6 µm) in width. The two polar capsules were equal in size, occupying a little more than half of the myxospore body, measuring 4.0 ± 0.2 µm (3.9-4.1 µm) in length and 1.7 ± 0.1 µm (1.5-1.8 µm) in width. The polar tubules coiled in six turns, perpendicular to the long axis of polar capsule. Phylogenetic analysis placed the new species within a clade containing nine myxobolid species from South American characiforms fish and appears as a close species of Myxobolus pantanalis. Nevertheless, the sequences of the new species and M. pantanalis have a large genetic divergence of 13.5% in their SSU rDNA. In light of the differences observed from the integrative taxonomy, we confidently considered that this isolate is a new species of cnidarian myxosporean, M. douradae n. sp., increasing the knowledge of diversity of this enigmatic group of cnidarians.


Assuntos
Cnidários , Doenças dos Peixes , Doenças Parasitárias em Animais , Animais , Brasil , Brânquias , Filogenia , Baço
13.
Toxicon, v. 199, p. 127-138, ago. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3864

RESUMO

Cnidarians are equipped with nematocysts, which are specialized organelles used to inoculate venom during prey capturing and defense. Their venoms are rich in toxins and a potential source of bioactive compounds, however, poorly explored so far. In this work, the activity of the methanolic extracts from the hydromedusa Olindias sambaquiensis and the cubozoan jellyfish Chiropsalmus quadrumanus were studied in sympathetic neurotransmission. For that, bisected rat vas deferens - a classic model of sympathetic neurotransmission - were incubated with the extracts for further myographic and histopathological analysis. The O. sambaquiensis extract, at 0.1 μg/mL, facilitated the neurogenic contractions of the noradrenergic-rich epididymal portion, while reducing the noradrenaline (NA) potency, which suggests an interaction with postsynaptic α1-adrenoceptors. On the other hand, a higher concentration (1 μg/mL) leads to time- and frequency-dependent blockade of nerve-evoked contractions without significantly changing the response to exogenous NA. In turn, the C. quadrumanus extract at 0.1 μg/mL induced blockade of nerve-evoked noradrenergic contractions while reducing the potency to exogenous NA. Both extracts did not affect the purinergic neurotransmission or induce muscle damages. Our results demonstrate that O. sambaquiensis and C. quadrumanus extracts significantly interfere with the noradrenergic neurotransmission without altering purinergic response or smooth muscle structure on rat vas deferens. Such results bring to light the pharmacological potential of O. sambaquiensis and C. quadrumanus molecules for therapeutics focusing on noradrenergic neurotransmission.

14.
Mar Environ Res ; 162: 105161, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33065521

RESUMO

Cassiopea jellyfish have successfully invaded several marine ecosystems worldwide. We investigated if Cassiopea andromeda grows larger (umbrella size) and if their populations are more stable in shrimp farms than in mangroves in the Brazilian coast. Our results show that jellyfish abundance is higher in the shrimp farm during the rainy season and in the mangrove during dry season. The population is stable during both seasons in the shrimp farm, but unstable in the mangroves, as jellyfish are absent during rainy season. Shrimp farm-associated jellyfish are three times larger than those in the mangroves, regardless of season. We recorded the largest (49.2 cm of umbrella diameter) ever C. andromeda individual in the shrimp farm. Unlike the mangroves, the shrimp farm provides environmental intra-annual stability that promotes jellyfish growth and population persistence. Therefore, C. andromeda populations can be seasonally dynamic and artificial environments such as aquaculture facilities may facilitate the invasion process.


Assuntos
Aquicultura , Ecossistema , Animais , Brasil , Cifozoários , Estações do Ano
15.
Zookeys ; 952: 1-63, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32774111

RESUMO

The diversity of Ceriantharia is known from studies formally describing species from the late 18th Century onwards. However, no nomenclators including a list and discussion of all valid species have been produced since a list discussed by Carlgren in 1912. The present nomenclator presents a complete list of adult species of Ceriantharia of the World, including a discussion on each species. It includes the three families (Arachnactidae, Botrucnidiferidae, Cerianthidae) and the currently accepted 54 species based on their adult form. This study serves as a presentation of the "state-of-the-art" list of species of Ceriantharia, and includes a species identification key to support taxonomic identification. Additional in-depth species-by-species investigations for almost all cerianthid species is still needed, as the information available for most of these species is quite superficial.

16.
Microb Pathog ; 147: 104372, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32652114

RESUMO

A new myxozoan species belonging to the genus Henneguya was isolated from the serous membrane of the visceral cavity of the hognosed catfish Brochis multiradiatus from Peruvian Amazon. Whitish plasmodia, macroscopically visible, were found in four of the thirty examined fishes. Mature myxospores were ellipsoidal in shape in frontal view and had a total length of 44.5 ± 0.6 µm (43.9-45.1), spore body measured 18.7 ± 0.9 µm (16.8-19.6) in length, 7.1 ± 0.2 µm (6.6-7.4) in width and 5.5 ± 0.3 µm (4.9-5.6) in thickness. The two polar capsules were elongated and equal in size, measuring 9.1 ± 0.1 µm (8.8-9.4) in length and 1.7 ± 0.1 µm (1.6-1.8) in width, occupying half of the myxospore body. Polar tubules coiled in 10-11 turns perpendicular to the long axis of the polar capsule. The caudal appendage was not bifurcated and measured 25.8 ± 0.6 µm (24.7-26.5) in length. The sequencing of the 18S rDNA gene resulted in 1400 bp and this sequence did not match any of the myxozoans available in GenBank. Phylogenetic analysis placed the new species in a well-supported subclade of Henneguya spp. infecting callichthyid fishes, with Henneguya loretoensis being the closest species. This study is the first description of a myxozoan species, Henneguya multiradiatus n. sp. from a fish of the genus Brochis.


Assuntos
Peixes-Gato , Cnidários , Doenças dos Peixes , Myxozoa , Parasitos , Doenças Parasitárias em Animais , Animais , DNA Ribossômico/genética , Brânquias , Myxozoa/genética , Peru , Filogenia
17.
Acta Trop ; 210: 105545, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32502480

RESUMO

A new Myxobolus species is described infecting gill filaments of the endangered ornamental fish Otocinclus cocama from Peruvian Amazon. In a total of 35 fish examined, five (14.3%) had myxozoan plasmodia. Taxonomic analysis was performed integrating multiple characters, including morphometrical, biological traits, ssrDNA sequence data and host ecological characters. Myxospores of M. iquitoensis n. sp. were ovoid in shape from the frontal view and measured 17.6±1.2 µm (16.2-19.8 µm) in length and 10.5±0.7 µm (9.8-12 µm) in width. The two polar capsules were elongate in shape, equal in size and occupying almost half of the myxospore body. They measured 8.7±0.4 µm (6.9-9.3 µm) in length and 3.3±0.2 µm (3-3.6 µm) in width. The polar tubules presented six to seven turns. Molecular phylogenetic analysis revealed that the obtained ssrDNA sequence did not match any existing sequences in GenBank but showed M. iquitoensis n. sp. to be a close species of M. figueirae. Nonetheless, the ssrDNA sequences of those species show large genetic divergence. This is the first description and phylogenetic study of a myxozoan parasitizing fish of the genus Otocinclus from South America, as well the first report of these parasites infecting a fish belonging to the Loricariidae family from Amazon basin. Considering the endangered status of the host, the high degree of host-specificity of freshwater histozoic myxobolids, the low occurrence shown by the new myxozoan, and the fact that this is the only host known for this myxozoan, the conservation status of the new species of myxozoan is likely to be connected to the future survival of its host.


Assuntos
Doenças dos Peixes/parasitologia , Myxobolus/genética , Animais , Água Doce , Brânquias/parasitologia , Myxobolus/classificação , Doenças Parasitárias em Animais/parasitologia , Peru , Filogenia , América do Sul
18.
Ecol Evol ; 10(4): 1794-1803, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32128117

RESUMO

Tubastraea coccinea is an azooxanthellate coral species recorded in the Indian and Atlantic oceans and is presently widespread in the southwestern Atlantic with an alien status for Brazil. T. coccinea outcompete other native coral species by using a varied repertoire of biological traits. For example, T. coccinea has evolved potent venom capable of immobilizing and digesting zooplankton prey. Diversification and modification of venom toxins can provide potential adaptive benefits to individual fitness, yet acquired alteration of venom composition in cnidarians is poorly understood as the adaptive flexibility affecting toxin composition in these ancient lineages has been largely ignored. We used quantitative high-throughput proteomics to detect changes in toxin expression in clonal fragments of specimens collected and interchanged from two environmentally distinct and geographically separate study sites. Unexpectedly, despite global changes in protein expression, there were no changes in the composition and abundance of toxins from coral fragments recovered from either site, and following clonal transplantation between sites. There were also no apparent changes to the cnidome (cnidae) and gross skeletal or soft tissue morphologies of the specimens. These results suggest that the conserved toxin complexity of T. coccinea co-evolved with innovation of the venom delivery system, and its morphological development and phenotypic expression are not modulated by habitat pressures over short periods of time. The adaptive response of the venom trait to specific predatory regimes, however, necessitates further consideration.

19.
Zookeys ; 874: 127-148, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31565021

RESUMO

The present study presents a revision of the genus Ceriantheomorphe Carlgren, 1931, including redescriptions of the two presently recognized species, Ceriantheomorphe ambonensis (Kwietniewski, 1898) and Ceriantheomorphe brasiliensis (Mello-Leitão, 1919), comb. nov., and a description of the new species Ceriantheomorphe adelita sp. nov.

20.
Biol Bull ; 237(1): 26-35, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31441701

RESUMO

In this quantitative proteomics study we determined the variety and relative abundance of toxins present in enriched preparations of two nematocyst types isolated from the primary tentacles of the adult medusa stage of the hydrozoan Olindias sambaquiensis. The two nematocyst types were microbasic mastigophores and microbasic euryteles, and these were recovered from the macerated tentacle tissues by using a differential centrifugation approach. Soluble protein extracts from these nematocysts were tagged with tandem mass tag isobaric labels and putative toxins identified using tandem mass spectrometry coupled with a stringent bioinformatics annotation pipeline. Astonishingly, the venom composition of the two capsule types was nearly identical, and there was also little difference in the comparative abundance of toxins between the two nematocyst preparations. This homogeneity suggested that the same toxin complement was present regardless of the penetrative ability of the nematocyst type. Predicted toxin protein families that constituted the venom closely matched those of the toxic proteome of O. sambaquiensis published four years previously, suggesting that venom composition in this species changes little over time. Retaining an array of different nematocyst types to deliver a single venom, rather than sustaining the high metabolic cost necessary to maintain a dynamically evolving venom, may be more advantageous, given the vastly different interspecific interactions that adult medusa encounter in coastal zones.


Assuntos
Venenos de Cnidários/química , Hidrozoários/química , Animais , Hidrozoários/anatomia & histologia , Nematocisto/anatomia & histologia , Nematocisto/química , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA