Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Parasit Vectors ; 14(1): 147, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33685497

RESUMO

BACKGROUND: Among Dermanyssoidea, the chicken red mite (Dermanyssus gallinae) and the northern fowl mite (Ornithonyssus sylviarum) are considered to be the cause of high economic losses endured by the poultry industry in the Holarctic region, with O. sylviarum predominating in North America and D. gallinae in Europe. Both species have a short life-cycle (thereby allowing a rapid build-up of massive infestations), a wide range of hosts, synanthropic presence and the ability to bite humans. The aim of this study was to analyze dermanyssoid mite specimens, collected in two human dwellings and two racing pigeon premises in different urban areas in Hungary, with molecular-phylogenetic methods. METHODS: Mite species were identified morphologically. This was followed by DNA extraction and molecular-phylogenetic analyses of selected mites, based on the cytochrome c oxidase subunit I (cox1) and 28S rRNA (28S) genes. RESULTS: Mites that had invaded a home from a pigeon nest and were linked to human dermatitis were morphologically and molecularly identified as D. gallinae special lineage L1. Specimens collected at all other sampling sites were identified as O. sylviarum, including mites that had invaded a home from a house martin (Delichon urbicum) nest, as well as those which were collected from racing pigeons. House martin- or pigeon-associated O. sylviarum specimens showed the highest sequence identity and closest phylogenetic relationship with conspecific mites reported in GenBank from Israel or Canada, respectively. CONCLUSIONS: Detailed morphological and molecular-phylogenetic analyses of D. gallinae lineage L1 confirmed its status as a cryptic species within D. gallinae (s.l.). Taking into account the well-documented latitudinal migratory routes of house martins between Hungary and Africa, O. sylviarum associated with this bird species most likely arrived on its host from the eastern Mediterranean region. On the other hand, mites collected from pigeons in Hungary showed cox1 genetic homogeneity with North American O. sylviarum, which can only be explained by a long-distance (west-to-east intercontinental) connection of birds and their mites as part of human activity (e.g. transportation to exhibitions or trading). In summary, this is the first molecularly confirmed and phylogenetically analyzed case of O. sylviarum infestation of birds in Hungary, implicating urban environment and involving distant parts of the country. This is also the first report of D. gallinae lineage L1 in central Europe.


Assuntos
Migração Animal , Columbidae/parasitologia , Doenças Transmissíveis Importadas/parasitologia , Infestações por Ácaros/veterinária , Ácaros/classificação , Ácaros/genética , Filogenia , Animais , Columbidae/fisiologia , Feminino , Habitação , Humanos , Hungria , Ácaros/fisiologia , Reforma Urbana
2.
Antonie Van Leeuwenhoek ; 113(7): 1067-1073, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32318980

RESUMO

Increasing amount of data attest that (in the context of vector-borne infections) birds are not only important as hosts of blood-sucking arthropod vectors, but also as reservoirs of vector-borne pathogens. From 2015 to 2019 cadavers of 100 birds (from 45 species, nine orders) were collected in Hungary, and their organs were screened for DNA from a broad range of vector-borne bacteria with PCR and sequencing. Molecular analyses revealed the presence of Anaplasmataceae, and sequencing identified bacteria closely related to Neorickettsia helminthoeca and Ehrlichia chaffeensis in a Eurasian teal (Anas crecca) and a song thrush (Turdus philomelos), respectively. All samples were PCR negative for rickettsiae, borreliae, Francisella and Coxiella spp., as well as for piroplasms. To our knowledge, this is the first report of a Neorickettsia and an Ehrlichia sp., which belong to the phylogenetic groups of N. helminthoeca and E. chaffeensis, respectively, from Europe. The potential presence of these two vector-borne bacteria needs to be taken into account during future studies on the eco-epidemiology of Anaplasmataceae in Europe.


Assuntos
Anaplasmataceae/classificação , Aves/microbiologia , Ehrlichia chaffeensis/classificação , Neorickettsia/classificação , Filogenia , Anaplasmataceae/genética , Anaplasmataceae/isolamento & purificação , Animais , Técnicas de Tipagem Bacteriana , Doenças das Aves/microbiologia , Borrelia , DNA Bacteriano/genética , Ehrlichia chaffeensis/genética , Ehrlichia chaffeensis/isolamento & purificação , Europa (Continente) , Hungria , Neorickettsia/genética , Neorickettsia/isolamento & purificação , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Rickettsia
3.
Antonie Van Leeuwenhoek ; 111(9): 1707-1717, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29492770

RESUMO

In Europe, several species of bats, owls and kestrels exemplify highly urbanised, flying vertebrates, which may get close to humans or domestic animals. Bat droppings and bird pellets may have epidemiological, as well as diagnostic significance from the point of view of pathogens. In this work 221 bat faecal and 118 bird pellet samples were screened for a broad range of vector-borne bacteria using PCR-based methods. Rickettsia DNA was detected in 13 bat faecal DNA extracts, including the sequence of a rickettsial insect endosymbiont, a novel Rickettsia genotype and Rickettsia helvetica. Faecal samples of the pond bat (Myotis dasycneme) were positive for a Neorickettsia sp. and for haemoplasmas of the haemofelis group. In addition, two bird pellets (collected from a Long-eared Owl, Asio otus, and from a Common Kestrel, Falco tinnunculus) contained the DNA of a Rickettsia sp. and Anaplasma phagocytophilum, respectively. In both of these bird pellets the bones of Microtus arvalis were identified. All samples were negative for Borrelia burgdorferi s.l., Francisella tularensis, Coxiella burnetii and Chlamydiales. In conclusion, bats were shown to pass rickettsia and haemoplasma DNA in their faeces. Molecular evidence is provided for the presence of Neorickettsia sp. in bat faeces in Europe. In the evaluated regions bat faeces and owl/kestrel pellets do not appear to pose epidemiological risk from the point of view of F. tularensis, C. burnetii and Chlamydiales. Testing of bird pellets may provide an alternative approach to trapping for assessing the local occurrence of vector-borne bacteria in small mammals.


Assuntos
Aves/microbiologia , Quirópteros/microbiologia , Fezes/microbiologia , Neorickettsia/genética , Anaplasma phagocytophilum/genética , Infecções por Anaplasmataceae/microbiologia , Animais , DNA Bacteriano/genética , Europa (Continente) , Neorickettsia/classificação , Neorickettsia/isolamento & purificação , Filogenia , RNA Ribossômico 16S/genética , Estrigiformes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA