Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Viruses ; 13(2)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672349

RESUMO

Integrase-defective lentiviral vectors (IDLVs) have been used as a safe and efficient delivery system in several immunization protocols in murine and non-human primate preclinical models as well as in recent clinical trials. In this work, we validated in preclinical murine models our vaccine platform based on IDLVs as delivery system for cancer immunotherapy. To evaluate the anti-tumor activity of our vaccine strategy we generated IDLV delivering ovalbumin (OVA) as a non-self-model antigen and TRP2 as a self-tumor associated antigen (TAA) of melanoma. Results demonstrated the ability of IDLVs to eradicate and/or controlling tumor growth after a single immunization in preventive and therapeutic approaches, using lymphoma and melanoma expressing OVA. Importantly, LV-TRP2 but not IDLV-TRP2 was able to break tolerance efficiently and prevent tumor growth of B16F10 melanoma cells. In order to improve the IDLV efficacy, the human homologue of murine TRP2 was used, showing the ability to break tolerance and control the tumor growth. These results validate the use of IDLV for cancer therapy.


Assuntos
Vacinas Anticâncer/administração & dosagem , Vetores Genéticos/genética , Imunoterapia , Integrases/metabolismo , Lentivirus/genética , Melanoma/imunologia , Melanoma/terapia , Animais , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Vetores Genéticos/metabolismo , Humanos , Integrases/genética , Oxirredutases Intramoleculares/administração & dosagem , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/imunologia , Lentivirus/enzimologia , Lentivirus/metabolismo , Masculino , Melanoma/genética , Camundongos , Camundongos Endogâmicos C57BL , Vacinação
2.
Cell Rep ; 26(5): 1242-1257.e7, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30699352

RESUMO

Lentiviruses are among the most promising viral vectors for in vivo gene delivery. To overcome the risk of insertional mutagenesis, integrase-deficient lentiviral vectors (IDLVs) have been developed. We show here that strong and persistent specific cytotoxic T cell (CTL) responses are induced by IDLVs, which persist several months after a single injection. These responses were associated with the induction of mild and transient maturation of dendritic cells (DCs) and with the production of low levels of inflammatory cytokines and chemokines. They were independent of the IFN-I, TLR/MyD88, interferon regulatory factor (IRF), retinoic acid induced gene I (RIG-I), and stimulator of interferon genes (STING) pathways but require NF-κB signaling in CD11c+ DCs. Despite the lack of integration of IDLVs, the transgene persists for 3 months in the spleen and liver of IDLV-injected mice. These results demonstrate that the capacity of IDLVs to trigger persistent adaptive responses is mediated by a weak and transient innate response, along with the persistence of the vector in tissues.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vetores Genéticos/metabolismo , Integrases/deficiência , Lentivirus/enzimologia , Proteínas de Membrana/metabolismo , Animais , Diferenciação Celular , Células Dendríticas/citologia , Células HeLa , Humanos , Imunidade , Integrases/metabolismo , Interferons/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Ovalbumina/imunologia , Transdução de Sinais , Baço/metabolismo , Linfócitos T Citotóxicos/imunologia , Transcriptoma/genética , Transgenes
3.
Front Immunol ; 9: 171, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29459873

RESUMO

Viral vectors represent an attractive technology for vaccine delivery. We exploited the integrase defective lentiviral vector (IDLV) as a platform for delivering relevant antigens within the context of the ADITEC collaborative research program. In particular, Influenza virus hemagglutinin (HA) and nucleoprotein (NP) were delivered by IDLVs while H1N1 A/California/7/2009 subunit vaccine (HAp) with or without adjuvant was used to compare the immune response in a murine model of immunization. In order to maximize the antibody response against HA, both IDLVs were also pseudotyped with HA (IDLV-HA/HA and IDLV-NP/HA, respectively). Groups of CB6F1 mice were immunized intramuscularly with a single dose of IDLV-NP/HA, IDLV-HA/HA, HAp alone, or with HAp together with the systemic adjuvant MF59. Six months after the vaccine prime all groups were boosted with HAp alone. Cellular and antibody responses to influenza antigens were measured at different time points after the immunizations. Mice immunized with HA-pseudotyped IDLVs showed similar levels of anti-H1N1 IgG over time, evaluated by ELISA, which were comparable to those induced by HAp + MF59 vaccination, but significantly higher than those induced by HAp alone. The boost with HAp alone induced an increase of antibodies in all groups, and the responses were maintained at higher levels up to 18 weeks post-boost. The antibody response was functional and persistent overtime, capable of neutralizing virus infectivity, as evaluated by hemagglutination inhibition and microneutralization assays. Moreover, since neuraminidase (NA)-expressing plasmid was included during IDLV preparation, immunization with IDLV-NP/HA and IDLV-HA/HA also induced functional anti-NA antibodies, evaluated by enzyme-linked lectin assay. IFNγ-ELISPOT showed evidence of HA-specific response in IDLV-HA/HA immunized animals and persistent NP-specific CD8+ T cell response in IDLV-NP/HA immunized mice. Taken together our results indicate that IDLV can be harnessed for producing a vaccine able to induce a comprehensive immune response, including functional antibodies directed toward HA and NA proteins present on the vector particles in addition to a functional T cell response directed to the protein transcribed from the vector.


Assuntos
Vetores Genéticos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/administração & dosagem , Vacinas contra Influenza/administração & dosagem , Lentivirus/genética , Infecções por Orthomyxoviridae/prevenção & controle , Proteínas do Core Viral/administração & dosagem , Animais , Anticorpos Antivirais/sangue , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , ELISPOT , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunoglobulina G/sangue , Integrases/genética , Interferon gama , Camundongos , Infecções por Orthomyxoviridae/imunologia , Vacinação/métodos , Proteínas do Core Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA