Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuronal Signal ; 7(3): NS20220040, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37601008

RESUMO

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are associated with familial and sporadic forms of Parkinson's disease (PD). Sporadic PD and LRRK2 PD share main clinical and neuropathological features, namely hypokinesia, degeneration of nigro-striatal dopamine neurons and α-synuclein aggregates in the form of Lewy bodies. Animals harboring the most common LRRK2 mutations, i.e. p.G2019S and p.R1441C/G, have been generated to replicate the parkinsonian phenotype and investigate the underlying pathogenic mechanisms. Disappointingly, however, LRRK2 rodents did not consistently phenocopy hypokinesia and nigro-striatal degeneration, or showed Lewy body-like aggregates. Instead, LRRK2 rodents manifested non-motor signs and dysregulated transmission at dopaminergic and non-dopaminergic synapses that are reminiscent of behavioral and functional network changes observed in the prodromal phase of the disease. LRRK2 rodents also manifested greater susceptibility to different parkinsonian toxins or stressors when subjected to dual-hit or multiple-hit protocols, confirming LRRK2 mutations as genetic risk factors. In conclusion, LRRK2 rodents represent a unique tool to identify the molecular mechanisms through which LRRK2 modulates the course and clinical presentations of PD and to study the interplay between genetic, intrinsic and environmental protective/risk factors in PD pathogenesis.

2.
Br J Pharmacol ; 180(7): 927-942, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-34767639

RESUMO

BACKGROUND AND PURPOSE: Regulator of G-protein signalling 4 (RGS4) is a signal transduction protein that accelerates intrinsic GTPase activity of Gαi/o and Gαq subunits, suppressing GPCR signalling. Here, we investigate whether RGS4 modulates nociceptin/orphanin FQ (N/OFQ) opioid (NOP) receptor signalling and if this modulation has relevance for l-Dopa-induced dyskinesia. EXPERIMENTAL APPROACH: HEK293T cells transfected with NOP, NOP/RGS4 or NOP/RGS19 were challenged with N/OFQ and the small-molecule NOP agonist AT-403, using D1-stimulated cAMP levels as a readout. Primary rat striatal neurons and adult mouse striatal slices were challenged with either N/OFQ or AT-403 in the presence of the experimental RGS4 chemical probe, CCG-203920, and D1-stimulated cAMP or phosphorylated extracellular signal regulated kinase 1/2 (pERK) responses were monitored. In vivo, CCG-203920 was co-administered with AT-403 and l-Dopa to 6-hydroxydopamine hemilesioned rats, and dyskinetic movements, striatal biochemical correlates of dyskinesia (pERK and pGluR1 levels) and striatal RGS4 levels were measured. KEY RESULTS: RGS4 expression reduced NOFQ and AT-403 potency and efficacy in HEK293T cells. CCG-203920 increased N/OFQ potency in primary rat striatal neurons and potentiated AT-403 response in mouse striatal slices. CCG-203920 enhanced AT-403-mediated inhibition of dyskinesia and its biochemical correlates, without compromising its motor-improving effects. Unilateral dopamine depletion caused bilateral reduction of RGS4 levels, which was reversed by l-Dopa. l-Dopa acutely up-regulated RGS4 in the lesioned striatum. CONCLUSIONS AND IMPLICATIONS: RGS4 physiologically inhibits NOP receptor signalling. CCG-203920 enhanced NOP responses and improved the antidyskinetic potential of NOP receptor agonists, mitigating the effects of striatal RGS4 up-regulation occurring during dyskinesia expression. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.


Assuntos
Discinesia Induzida por Medicamentos , Levodopa , Camundongos , Ratos , Humanos , Animais , Levodopa/farmacologia , Analgésicos Opioides , Células HEK293 , Transdução de Sinais , Discinesia Induzida por Medicamentos/tratamento farmacológico , Receptores Opioides/metabolismo , Nociceptina
3.
Biomedicines ; 10(4)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35453631

RESUMO

The G2019S mutation in leucine rich-repeat kinase 2 (LRRK2) is a major cause of familial Parkinson's disease. We previously reported that G2019S knock-in mice manifest dopamine transporter dysfunction and phosphoSerine129 α-synuclein (pSer129 α-syn) immunoreactivity elevation at 12 months of age, which might represent pathological events leading to neuronal degeneration. Here, the time-dependence of these changes was monitored in the striatum of 6, 9, 12, 18 and 23-month-old G2019S KI mice and wild-type controls using DA uptake assay, Western analysis and immunohistochemistry. Western analysis showed elevation of membrane dopamine transporter (DAT) levels at 9 and 12 months of age, along with a reduction of vesicular monoamine transporter 2 (VMAT2) levels at 12 months. DAT uptake was abnormally elevated from 9 to up to 18 months. DAT and VMAT2 level changes were specific to the G2019S mutation since they were not observed in LRRK2 kinase-dead or knock-out mice. Nonetheless, dysfunctional DAT uptake was not normalized by acute pharmacological inhibition of LRRK2 kinase activity with MLi-2. Immunoblot analysis showed elevation of pSer129 α-syn levels in the striatum of 12-month-old G2019S KI mice, which, however, was not confirmed by immunohistochemical analysis. Instead, total α-syn immunoreactivity was found elevated in the striatum of 23-month-old LRRK2 knock-out mice. These data indicate mild changes in DA transporters and α-syn metabolism in the striatum of 12-month-old G2019S KI mice whose pathological relevance remains to be established.

4.
Brain ; 145(3): 1001-1017, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35285474

RESUMO

Synucleinopathies encompass several neurodegenerative diseases, which include Parkinson's disease, dementia with Lewy bodies and multiple system atrophy. These diseases are characterized by the deposit of α-synuclein aggregates in intracellular inclusions in neurons and glial cells. Unlike Parkinson's disease and dementia with Lewy bodies, where aggregates are predominantly neuronal, multiple system atrophy is associated with α-synuclein cytoplasmic inclusions in oligodendrocytes. Glial cytoplasmic inclusions are the pathological hallmark of multiple system atrophy and are associated with neuroinflammation, modest demyelination and, ultimately, neurodegeneration. To evaluate the possible pathogenic role of glial cytoplasmic inclusions, we inoculated glial cytoplasmic inclusion-containing brain fractions obtained from multiple system atrophy patients into the striatum of non-human primates. After a 2-year in vivo phase, extensive histochemical and biochemical analyses were performed on the whole brain. We found loss of both nigral dopamine neurons and striatal medium spiny neurons, as well as loss of oligodendrocytes in the same regions, which are characteristics of multiple system atrophy. Furthermore, demyelination, neuroinflammation and α-synuclein pathology were also observed. These results show that the α-synuclein species in multiple system atrophy-derived glial cytoplasmic inclusions can induce a pathological process in non-human primates, including nigrostriatal and striatofugal neurodegeneration, oligodendroglial cell loss, synucleinopathy and gliosis. The present data pave the way for using this experimental model for MSA research and therapeutic development.


Assuntos
Doenças Desmielinizantes , Doença por Corpos de Lewy , Atrofia de Múltiplos Sistemas , Doença de Parkinson , Sinucleinopatias , Animais , Encéfalo/patologia , Doenças Desmielinizantes/patologia , Humanos , Corpos de Inclusão/metabolismo , Doença por Corpos de Lewy/patologia , Atrofia de Múltiplos Sistemas/patologia , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo
5.
Biochem Soc Trans ; 50(1): 621-632, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35225340

RESUMO

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are associated with familial and sporadic forms of Parkinson's disease (PD), for which the LRRK2 locus itself represents a risk factor. Idiopathic and LRRK2-related PD share the main clinical and neuropathological features, thus animals harboring the most common LRRK2 mutations, i.e. G2019S and R1441C/G, have been generated to replicate the parkinsonian phenotype and investigate the underlying pathological mechanisms. Most LRRK2 rodent models, however, fail to show the main neuropathological hallmarks of the disease i.e. the degeneration of dopaminergic neurons in the substantia nigra pars compacta and presence of Lewy bodies or Lewy body-like aggregates of α-synuclein, lacking face validity. Rather, they manifest dysregulation in cellular pathways and functions that confer susceptibility to a variety of parkinsonian toxins/triggers and model the presymptomatic/premotor stages of the disease. Among such susceptibility factors, dysregulation of synaptic activity and proteostasis are evident in LRRK2 mutants. These abnormalities are also manifest in the PD brain and represent key events in the development and progression of the pathology. The present minireview covers recent articles (2018-2021) investigating the role of LRRK2 and LRRK2 mutants in the regulation of synaptic activity and autophagy-lysosomal pathway. These articles confirm a perturbation of synaptic vesicle endocytosis and glutamate release in LRRK2 mutants. Likewise, LRRK2 mutants show a marked impairment of selective forms of autophagy (i.e. mitophagy and chaperone-mediated autophagy) and lysosomal function, with minimal perturbations of nonselective autophagy. Thus, LRRK2 rodents might help understand the contribution of these pathways to PD.


Assuntos
Doença de Parkinson , Animais , Autofagia/genética , Neurônios Dopaminérgicos/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Lisossomos/metabolismo , Camundongos , Mutação , Doença de Parkinson/metabolismo
6.
Neurobiol Dis ; 162: 105579, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871735

RESUMO

The G2019S mutation of LRRK2 represents a risk factor for idiopathic Parkinson's disease. Here, we investigate whether LRRK2 kinase activity regulates susceptibility to the environmental toxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP). G2019S knock-in mice (bearing enhanced kinase activity) showed greater nigro-striatal degeneration compared to LRRK2 knock-out, LRRK2 kinase-dead and wild-type mice following subacute MPTP treatment. LRRK2 kinase inhibitors PF-06447475 and MLi-2, tested under preventive or therapeutic treatments, protected against nigral dopamine cell loss in G2019S knock-in mice. MLi-2 also rescued striatal dopaminergic terminal degeneration in both G2019S knock-in and wild-type mice. Immunoblot analysis of LRRK2 Serine935 phosphorylation levels confirmed target engagement of LRRK2 inhibitors. However, MLi-2 abolished phosphoSerine935 levels in the striatum and midbrain of both wild-type and G2019S knock-in mice whereas PF-06447475 partly reduced phosphoSerine935 levels in the midbrain of both genotypes. In vivo and ex vivo uptake of the 18-kDa translocator protein (TSPO) ligand [18F]-VC701 revealed a similar TSPO binding in MPTP-treated wild-type and G2019S knock-in mice which was consistent with an increased GFAP striatal expression as revealed by Real Time PCR. We conclude that LRRK2 G2019S, likely through enhanced kinase activity, confers greater susceptibility to mitochondrial toxin-induced parkinsonism. LRRK2 kinase inhibitors are neuroprotective in this model.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Animais , Corpo Estriado/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Camundongos , Mutação , Doença de Parkinson/metabolismo , Transtornos Parkinsonianos/metabolismo , Fosforilação
7.
Neurobiol Dis ; 159: 105487, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34419621

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) are associated with Parkinson's disease. LRRK2 modulates the autophagy-lysosome pathway (ALP), a clearance process subserving the quality control of cellular proteins and organelles. Since dysfunctional ALP might lead to α-synuclein accumulation and, hence, Parkinson's disease, LRRK2 kinase modulation of ALP, its age-dependence and relation with pSer129 α-synuclein inclusions were investigated in vivo. Striatal ALP markers were analyzed by Western blotting in 3, 12 and 20-month-old LRRK2 G2019S knock-in mice (bearing enhanced kinase activity), LRRK2 knock-out mice, LRRK2 D1994S knock-in (kinase-dead) mice and wild-type controls. The lysosomotropic agent chloroquine was used to investigate the autophagic flux in vivo. Quantitative Real-time PCR was used to quantify the transcript levels of key ALP genes. The activity of the lysosomal enzyme glucocerebrosidase was measured using enzymatic assay. Immunohistochemistry was used to co-localize LC3B puncta with pSer129 α-synuclein inclusion in striatal and nigral neurons. No genotype differences in ALP markers were observed at 3 months. Conversely, increase of LC3-I, p62, LAMP2 and GAPDH levels, decrease of p-mTOR levels and downregulation of mTOR and TFEB expression was observed in 12-month-old kinase-dead mice. The LC3-II/I ratio was reduced following administration of chloroquine, suggesting a defective autophagic flux. G2019S knock-in mice showed LAMP2 accumulation and downregulation of ALP key genes MAP1LC3B, LAMP2, mTOR, TFEB and GBA1. Subacute administration of the LRRK2 kinase inhibitor MLi-2 in wild-type and G2019S knock-in mice did not replicate the pattern of kinase-dead mice. Lysosomal glucocerebrosidase activity was increased in 3 and 12-month-old knock-out and kinase-dead mice. LC3B puncta accumulation and pSer129 α-synuclein inclusions were dissociated in striatal neurons of kinase-dead and G2019S knock-in mice. We conclude that constitutive LRRK2 kinase silencing results in early deregulation of GCase activity followed by late impairment of macroautophagy and chaperone-mediated autophagy.


Assuntos
Envelhecimento/genética , Autofagia/genética , Glucosilceramidase/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Neostriado/metabolismo , Neurônios/metabolismo , Doença de Parkinson/genética , alfa-Sinucleína/metabolismo , Envelhecimento/metabolismo , Animais , Técnicas de Introdução de Genes , Inativação Gênica , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Lisossomos , Camundongos , Camundongos Knockout , Doença de Parkinson/metabolismo
8.
Brain Res ; 1768: 147583, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34284020

RESUMO

Previous studies have pointed out that l-DOPA can interact with D1 or D2 receptors independent of its conversion to endogenous dopamine. The present study was set to investigate whether l-DOPA modulates dopamine release from striatal nerve terminals, using a preparation of synaptosomes preloaded with [3H]DA. Levodopa (1 µM) doubled the K+-induced [3H]DA release whereas the D2/D3 receptor agonist pramipexole (100 nM) inhibited it. The l-DOPA-evoked facilitation was mimicked by the D1 receptor agonist SKF38393 (30-300 nM) and prevented by the D1/D5 antagonist SCH23390 (100 nM) but not the DA transporter inhibitor GBR12783 (300 nM) or the aromatic l-amino acid decarboxylase inhibitor benserazide (1 µM). Higher l-DOPA concentrations (10 and 100 µM) elevated spontaneous [3H]DA efflux. This effect was counteracted by GBR12783 but not SCH23390. Binding of [3H]SCH23390 in synaptosomes (in test tubes) revealed a dense population of D1 receptors (2105 fmol/mg protein). Both SCH23390 and SKF38393 fully inhibited [3H]SCH23390 binding (Ki 0.42 nM and 29 nM, respectively). l-DOPA displaced [3H]SCH23390 binding maximally by 44% at 1 mM. This effect was halved by addition of GBR12935 and benserazide. We conclude that l-DOPA facilitates exocytotic [3H]DA release through SCH23390-sensitive D1 receptors, independent of its conversion to DA. It also promotes non-exocytotic [3H]DA release, possibly via conversion to DA and reversal of DA transporter. These data confirm that l-DOPA can directly interact with dopamine D1 receptors and might extend our knowledge of the neurobiological mechanisms underlying l-DOPA clinical effects.


Assuntos
Dopamina/metabolismo , Levodopa/farmacologia , Receptores de Dopamina D1/metabolismo , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Animais , Benzazepinas/farmacocinética , Benzazepinas/farmacologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Levodopa/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Dopamina D1/efeitos dos fármacos , Receptores de Dopamina D2/efeitos dos fármacos , Receptores de Dopamina D2/metabolismo
9.
Biomedicines ; 9(5)2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34063112

RESUMO

Mutations in the PARK2 gene encoding the protein parkin cause autosomal recessive juvenile parkinsonism (ARJP), a neurodegenerative disease characterized by early dysfunction and loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc). No therapy is currently available to prevent or slow down the neurodegeneration in ARJP patients. Preclinical models are key to clarifying the early events that lead to neurodegeneration and reveal the potential of novel neuroprotective strategies. ParkinQ311X is a transgenic mouse model expressing in DA neurons a mutant parkin variant found in ARJP patients. This model was previously reported to show the neuropathological hallmark of the disease, i.e., the progressive loss of DA neurons. However, the early dysfunctions that precede neurodegeneration have never been investigated. Here, we analyzed SNc DA neurons in parkinQ311X mice and found early features of mitochondrial dysfunction, extensive cytoplasmic vacuolization, and dysregulation of spontaneous in vivo firing activity. These data suggest that the parkinQ311X mouse recapitulates key features of ARJP and provides a useful tool for studying the neurodegenerative mechanisms underlying the human disease and for screening potential neuroprotective drugs.

10.
Brain ; 144(5): 1509-1525, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33876242

RESUMO

Parkinson's disease is characterized by the progressive degeneration of dopaminergic neurons within the substantia nigra pars compacta and the presence of protein aggregates in surviving neurons. The LRRK2 G2019S mutation is one of the major determinants of familial Parkinson's disease cases and leads to late-onset Parkinson's disease with pleomorphic pathology, including α-synuclein accumulation and deposition of protein inclusions. We demonstrated that LRRK2 phosphorylates N-ethylmaleimide sensitive factor (NSF). We observed aggregates containing NSF in basal ganglia specimens from patients with Parkinson's disease carrying the G2019S variant, and in cellular and animal models expressing the LRRK2 G2019S variant. We found that LRRK2 G2019S kinase activity induces the accumulation of NSF in toxic aggregates. Of note, the induction of autophagy cleared NSF aggregation and rescued motor and cognitive impairment observed in aged hG2019S bacterial artificial chromosome (BAC) mice. We suggest that LRRK2 G2019S pathological phosphorylation impacts on NSF biochemical properties, thus causing the formation of cytotoxic protein inclusions.


Assuntos
Encéfalo/patologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Doença de Parkinson/genética , Agregação Patológica de Proteínas/genética , Animais , Autofagia/fisiologia , Humanos , Mutação , Doença de Parkinson/patologia , Fosforilação , Agregação Patológica de Proteínas/patologia
11.
Function (Oxf) ; 2(2): zqab005, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35330818

RESUMO

Basal expression of the P2X7 receptor (P2X7R) improves mitochondrial metabolism, Adenosine 5'-triphosphate (ATP) synthesis, and overall fitness of immune and non-immune cells. We investigated P2X7R contribution to energy metabolism and subcellular localization in fibroblasts (mouse embryo fibroblasts and HEK293 human fibroblasts), mouse microglia (primary brain microglia, and the N13 microglia cell line), and heart tissue. The P2X7R localizes to mitochondria, and its lack (1) decreases basal respiratory rate, ATP-coupled respiration, maximal uncoupled respiration, resting mitochondrial potential, mitochondrial matrix Ca2+ level, (2) modifies expression pattern of oxidative phosphorylation enzymes, and (3) severely affects cardiac performance. Hearts from P2rx7-deleted versus wild-type mice are larger, heart mitochondria smaller, and stroke volume, ejection fraction, fractional shortening, and cardiac output, are significantly decreased. Accordingly, the physical fitness of P2X7R-null mice is severely reduced. Thus, the P2X7R is a key modulator of mitochondrial energy metabolism and a determinant of physical fitness.


Assuntos
Trifosfato de Adenosina , Receptores Purinérgicos P2X7 , Animais , Humanos , Camundongos , Metabolismo Energético , Células HEK293 , Desempenho Físico Funcional , Receptores Purinérgicos P2X7/genética
12.
Cell Death Dis ; 11(11): 963, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33173027

RESUMO

Mutations in the PARK2 gene encoding the protein parkin cause autosomal recessive juvenile Parkinsonism (ARJP), a neurodegenerative disease characterized by dysfunction and death of dopamine (DA) neurons in the substantia nigra pars compacta (SNc). Since a neuroprotective therapy for ARJP does not exist, research efforts aimed at discovering targets for neuroprotection are critically needed. A previous study demonstrated that loss of parkin function or expression of parkin mutants associated with ARJP causes an accumulation of glutamate kainate receptors (KARs) in human brain tissues and an increase of KAR-mediated currents in neurons in vitro. Based on the hypothesis that such KAR hyperactivation may contribute to the death of nigral DA neurons, we investigated the effect of KAR antagonism on the DA neuron dysfunction and death that occur in the parkinQ311X mouse, a model of human parkin-induced toxicity. We found that early accumulation of KARs occurs in the DA neurons of the parkinQ311X mouse, and that chronic administration of the KAR antagonist UBP310 prevents DA neuron loss. This neuroprotective effect is associated with the rescue of the abnormal firing rate of nigral DA neurons and downregulation of GluK2, the key KAR subunit. This study provides novel evidence of a causal role of glutamate KARs in the DA neuron dysfunction and loss occurring in a mouse model of human parkin-induced toxicity. Our results support KAR as a potential target in the development of neuroprotective therapy for ARJP.


Assuntos
Alanina/análogos & derivados , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Receptores de Ácido Caínico/antagonistas & inibidores , Timina/análogos & derivados , Alanina/farmacologia , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/patologia , Regulação para Baixo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Doença de Parkinson/genética , Doença de Parkinson/patologia , Receptores de Ácido Caínico/metabolismo , Timina/farmacologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Receptor de GluK2 Cainato
13.
Neurobiol Dis ; 144: 105044, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32798726

RESUMO

Acetylcholine muscarinic receptors (mAChRs) contribute to both the facilitation and inhibition of levodopa-induced dyskinesia operated by striatal cholinergic interneurons, although the receptor subtypes involved remain elusive. Cholinergic afferents from the midbrain also innervate the substantia nigra reticulata, although the role of nigral mAChRs in levodopa-induced dyskinesia is unknown. Here, we investigate whether striatal and nigral M1 and/or M4 mAChRs modulate dyskinesia and the underlying striato-nigral GABAergic pathway activation in 6-hydroxydopamine hemilesioned rats. Reverse microdialysis allowed to deliver the mAChR antagonists telenzepine (M1 subtype preferring), PD-102807 and tropicamide (M4 subtype preferring), as well as the selective M4 mAChR positive allosteric modulator VU0152100 in striatum or substantia nigra, while levodopa was administered systemically. Dyskinetic movements were monitored along with nigral GABA (and glutamate) and striatal glutamate dialysate levels, taken as neurochemical correlates of striato-nigral pathway and cortico-basal ganglia-thalamo-cortical loop activation. We observed that intrastriatal telenzepine, PD-102807 and tropicamide alleviated dyskinesia and inhibited nigral GABA and striatal glutamate release. This was partially replicated by intrastriatal VU0152100. The M2 subtype preferring antagonist AFDX-116, used to elevate striatal acetylcholine levels, blocked the behavioral and neurochemical effects of PD-102807. Intranigral VU0152100 prevented levodopa-induced dyskinesia and its neurochemical correlates whereas PD-102807 was ineffective. These results suggest that striatal, likely postsynaptic, M1 mAChRs facilitate dyskinesia and striato-nigral pathway activation in vivo. Conversely, striatal M4 mAChRs can both facilitate and inhibit dyskinesia, possibly depending on their localization. Potentiation of striatal and nigral M4 mAChR transmission leads to powerful multilevel inhibition of striato-nigral pathway and attenuation of dyskinesia.


Assuntos
Dopaminérgicos/efeitos adversos , Discinesia Induzida por Medicamentos/metabolismo , Levodopa/efeitos adversos , Neostriado/metabolismo , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M4/metabolismo , Substância Negra/metabolismo , Regulação Alostérica , Animais , Discinesia Induzida por Medicamentos/etiologia , Discinesia Induzida por Medicamentos/fisiopatologia , Ácido Glutâmico/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Microdiálise , Antagonistas Muscarínicos/farmacologia , Neostriado/efeitos dos fármacos , Vias Neurais , Oxidopamina/toxicidade , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/etiologia , Transtornos Parkinsonianos/metabolismo , Ratos , Receptor Muscarínico M1/antagonistas & inibidores , Receptor Muscarínico M4/antagonistas & inibidores , Substância Negra/efeitos dos fármacos , Simpatolíticos/toxicidade , Ácido gama-Aminobutírico/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo
14.
Front Aging Neurosci ; 12: 152, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581765

RESUMO

Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the appearance of α-synuclein insoluble aggregates known as Lewy bodies. Neurodegeneration is accompanied by neuroinflammation mediated by cytokines and chemokines produced by the activated microglia. Several studies demonstrated that such an inflammatory process is an early event, and contributes to oxidative stress and mitochondrial dysfunctions. α-synuclein fibrillization and aggregation activate microglia and contribute to disease onset and progression. Mutations in different genes exacerbate the inflammatory phenotype in the monogenic compared to sporadic forms of PD. Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) with selected radiopharmaceuticals allow in vivo imaging of molecular modifications in the brain of living subjects. Several publications showed a reduction of dopaminergic terminals and dopamine (DA) content in the basal ganglia, starting from the early stages of the disease. Moreover, non-dopaminergic neuronal pathways are also affected, as shown by in vivo studies with serotonergic and glutamatergic radiotracers. The role played by the immune system during illness progression could be investigated with PET ligands that target the microglia/macrophage Translocator protein (TSPO) receptor. These agents have been used in PD patients and rodent models, although often without attempting correlations with other molecular or functional parameters. For example, neurodegeneration and brain plasticity can be monitored using the metabolic marker 2-Deoxy-2-[18F]fluoroglucose ([18F]-FDG), while oxidative stress can be probed using the copper-labeled diacetyl-bis(N-methyl-thiosemicarbazone) ([Cu]-ATSM) radioligand, whose striatal-specific binding ratio in PD patients seems to correlate with a disease rating scale and motor scores. Also, structural and functional modifications during disease progression may be evaluated by Magnetic Resonance Imaging (MRI), using different parameters as iron content or cerebral volume. In this review article, we propose an overview of in vivo clinical and non-clinical imaging research on neuroinflammation as an emerging marker of early PD. We also discuss how multimodal-imaging approaches could provide more insights into the role of the inflammatory process and related events in PD development.

15.
Br J Pharmacol ; 177(17): 3957-3974, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32464686

RESUMO

BACKGROUND AND PURPOSE: l-DOPA-induced dyskinesia (LID) is considered a major complication in the treatment of Parkinson's disease (PD). Buspirone (5-HT1A partial agonist) have shown promising results in the treatment of PD and LID, however no 5-HT-based treatment has been approved in PD. The present study was aimed to investigate how the substantia nigra pars reticulata (SNr) is affected by buspirone and whether it is a good target to study 5-HT antidyskinetic treatments. EXPERIMENTAL APPROACH: Buspirone was studied using in vivo single-unit, electrocorticogram, local field potential recordings along with microdialysis and immunohistochemistry in naïve/sham, 6-hydroxydopamine (6-OHDA)-lesioned or 6-OHDA-lesioned and l-DOPA-treated (6-OHDA/l-DOPA) rats. KEY RESULTS: Local buspirone inhibited SNr neuron activity in all groups. However, systemic buspirone reduced burst activity in 6-OHDA-lesioned rats (with or without l-DOPA treatment), whereas 8-OH-DPAT, a full 5-HT1A agonist induced larger inhibitory effects in sham animals. Neither buspirone nor 8-OH-DPAT markedly modified the low-frequency oscillatory activity in the SNr or synchronization within the SNr with the cortex. In addition, local perfusion of buspirone increased GABA and glutamate release in the SNr of naïve and 6-OHDA-lesioned rats but no effect in 6-OHDA/l-DOPA rats. In the 6-OHDA/l-DOPA group, increased 5-HT transporter and decreased 5-HT1A receptor expression was found. CONCLUSIONS AND IMPLICATIONS: The effects of buspirone in SNr are influenced by dopamine loss and l-DOPA treatment. The present results suggest that the regulation of burst activity of the SNr induced by DA loss may be a good target to test new drugs for the treatment of PD and LID.


Assuntos
Levodopa , Parte Reticular da Substância Negra , Animais , Antiparkinsonianos/farmacologia , Buspirona/farmacologia , Dopamina , Oxidopamina , Ratos , Substância Negra
16.
Neuropharmacology ; 167: 108006, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32086070

RESUMO

To investigate whether the reversible MAO-B inhibitor and sodium channel blocker safinamide impairs glutamate release under parkinsonian conditions in vivo, and this effect is dependent on MAO-B inhibition, safinamide (and rasagiline as a comparator) were administered to 6-hydroxydopamine hemilesioned rats, a model of Parkinson's disease, and haloperidol-treated rats, a model of neuroleptic-induced parkinsonism. A microdialysis probe was implanted in the dopamine-depleted dorsolateral striatum, globus pallidus, subthalamic nucleus or substantia nigra reticulata of 6-hydroxydopamine hemilesioned rats. Glutamate and GABA release was stimulated by reverse dialysis of veratridine, and safinamide or rasagiline were acutely administered before veratridine at doses inhibiting MAO-B >50%. A microdialysis probe was implanted in the substantia nigra reticulata of naïve rats to monitor glutamate and GABA release following acute haloperidol and safinamide administration. Safinamide inhibited the veratridine-evoked glutamate release in the globus pallidus and subthalamic nucleus but not in the striatum and substantia nigra. Moreover, it reduced pallidal and nigral GABA release. Conversely, rasagiline failed to modify the veratridine-induced glutamate and GABA release in the basal ganglia. Safinamide also inhibited the haloperidol-induced nigral glutamate release. MAO-B inhibitors safinamide and rasagiline differ in their abilities to inhibit depolarization-evoked glutamate release in the basal ganglia of parkinsonian rats. The ineffectiveness of rasagiline suggests that MAO-B inhibition does not contribute to the antiglutamatergic activity of safinamide. The glutamate-inhibiting action of safinamide within the subthalamo-external pallidal loop, which shows abnormal activity in Parkinson's disease, might contribute to its therapeutic actions of improving motor performance without provoking troublesome dyskinesia.


Assuntos
Alanina/análogos & derivados , Benzilaminas/uso terapêutico , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Ácido Glutâmico/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Alanina/farmacologia , Alanina/uso terapêutico , Animais , Benzilaminas/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Masculino , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Ratos , Ratos Sprague-Dawley
17.
J Med Chem ; 63(5): 2688-2704, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31951130

RESUMO

A novel series of C(3)-substituted piperdinylindoles were developed as nociceptin opioid receptor (NOP) partial agonists to explore a pharmacological hypothesis that NOP partial agonists would afford a dual pharmacological action of attenuating Parkinson's disease (PD) motor symptoms and development of levodopa-induced dyskinesias. SAR around the C-3 substituents investigated effects on NOP binding, intrinsic activity, and selectivity and showed that while the C(3)-substituted indoles are selective, high affinity NOP ligands, the steric, polar, and cationic nature of the C-3 substituents affected intrinsic activity to afford partial agonists with a range of efficacies. Compounds 4, 5, and 9 with agonist efficacies between 25% and 35% significantly attenuated motor deficits in the 6-OHDA-hemilesioned rat model of PD. Further, unlike NOP antagonists, which appear to worsen dyskinesia expression, these NOP partial agonists did not attenuate or worsen dyskinesia expression. The NOP partial agonists and their SAR reported here may be useful to develop nondopaminergic treatments for PD.


Assuntos
Antiparkinsonianos/uso terapêutico , Indóis/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Receptores Opioides/agonistas , Animais , Antiparkinsonianos/química , Antiparkinsonianos/farmacocinética , Células CACO-2 , Modelos Animais de Doenças , Humanos , Indóis/química , Indóis/farmacocinética , Masculino , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Piperidinas/química , Piperidinas/farmacocinética , Piperidinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Receptores Opioides/metabolismo , Relação Estrutura-Atividade , Receptor de Nociceptina
18.
Br J Pharmacol ; 177(1): 28-47, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31648371

RESUMO

The opioid-like neuropeptide nociceptin/orphanin FQ (N/OFQ) and its receptor (NOP receptor) contribute to Parkinson's disease (PD) and motor complications associated with levodopa therapy. The N/OFQ-NOP receptor system is expressed in cortical and subcortical motor areas and, notably, in dopaminergic neurons of the substantia nigra compacta. Dopamine depletion, as in rodent models of PD results in up-regulation of N/OFQ transmission in the substantia nigra and down-regulation of N/OFQ transmission in the striatum. Consistent with this, NOP receptor antagonists relieve motor deficits in PD models by reinstating the physiological balance between excitatory and inhibitory inputs impinging on nigro-thalamic GABAergic neurons. NOP receptor antagonists also counteract the degeneration of nigrostriatal dopaminergic neurons, possibly by attenuating the excitotoxicity or modulating the immune response. Conversely, NOP receptor agonists attenuate levodopa-induced dyskinesia by attenuating the hyperactivation of striatal D1 receptor signalling in neurons of the direct striatonigral pathway. The N/OFQ-NOP receptor system might represent a novel target in the therapy of PD.


Assuntos
Antiparkinsonianos/metabolismo , Antiparkinsonianos/uso terapêutico , Peptídeos Opioides/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Receptores Opioides/metabolismo , Animais , Ensaios Clínicos como Assunto/métodos , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Humanos , Levodopa/metabolismo , Levodopa/uso terapêutico , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Receptor de Nociceptina , Nociceptina
19.
Front Cell Dev Biol ; 7: 191, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572723

RESUMO

Parkinson's disease is characterized by the intracellular accumulation of α-synuclein which has been linked to early dopaminergic axonal degeneration. Identifying druggable targets that can promote axonal growth in cells overexpressing α-synuclein is important in order to develop strategies for early intervention. Class-IIa histone deacetylases (HDACs) have previously emerged as druggable targets, however, it is not known which specific class-IIa HDACs should be targeted to promote neurite growth in dopaminergic neurons. To provide insight into this, we used gene co-expression analysis to identify which, if any, of the class-IIa HDACs had a positive correlation with markers of dopaminergic neurons in the human substantia nigra. This revealed that two histone deacetylases, HDAC5 and HDAC9, are co-expressed with TH, GIRK2 and ALDH1A1 in the human SN. We further found that HDAC5 and HDAC9 are expressed in dopaminergic neurons in the adult mouse substantia nigra. We show that siRNAs targeting HDAC5 or HDAC9 can promote neurite growth in SH-SY5Y cells, and that their pharmacological inhibition, using the drug MC1568, promoted neurite growth in cultured rat dopaminergic neurons. Moreover, MC1568 treatment upregulated the expression of the neurotrophic factor, BMP2, and its downstream transcription factor, SMAD1. In addition, MC1568 or siRNAs targeting HDAC5 or HDAC9 led to an increase in Smad-dependent GFP expression in a reporter assay. Furthermore, MC1568 treatment of cultured rat dopaminergic neurons increased cellular levels of phosphorylated Smad1, which was prevented by the BMP receptor inhibitor, dorsomorphin. Dorsomorphin treatment prevented the neurite growth-promoting effects of siRNAs targeting HDAC5, as did overexpression of dominant-negative Smad4 or of the inhibitory Smad7, demonstrating a functional link to BMP signaling. Supplementation with BMP2 prevented the neurite growth-inhibitory effects of nuclear-restricted HDAC5. Finally, we report that siRNAs targeting HDAC5 or HDAC9 promoted neurite growth in cells overexpressing wild-type or A53T-α-synuclein and that MC1568 protected cultured rat dopaminergic neurons against the neurotoxin, MPP+. These findings establish HDAC5 and HDAC9 as novel regulators of BMP-Smad signaling, that additionally may be therapeutic targets worthy of further exploration in iPSC-derived human DA neurons and in vivo models of Parkinson's disease.

20.
Pharmacol Res Perspect ; 7(3): e00484, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31149340

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) gene have been pathogenically linked to Parkinson's disease, and pharmacological inhibition of LRRK2 is being pursued to tackle nigro-striatal dopaminergic neurodegeneration. However, LRRK2 kinase inhibitors may have manifold actions, affecting not only pathological mechanisms in dopaminergic neurons but also physiological functions in nondopaminergic neurons. Therefore, we investigated whether LRRK2 kinase inhibitors differentially modulate dopamine and glutamate release from the mouse striatum and cerebral cortex. Spontaneous and KCl-evoked [3H]-dopamine and glutamate release from superfused synaptosomes obtained from wild-type and LRRK2 knock-out, kinase-dead or G2019S knock-in mice was measured. Two structurally unrelated inhibitors, LRRK2-IN-1 and GSK2578215A, were tested. LRRK2, phosphoSerine1292 and phosphoSerine935 LRRK2 levels were measured in all genotypes, and target engagement was evaluated by monitoring phosphoSerine935 LRRK2. LRRK2-IN-1 inhibited striatal glutamate but not dopamine release; GSK2578215A inhibited striatal dopamine and cortical glutamate but enhanced striatal glutamate release. LRRK2-IN-1 reduced striatal and cortical phosphoSerine935 levels whereas GSK2578215A inhibited only the former. Neither LRRK2 inhibitor affected neurotransmitter release in LRRK2 knock-out and kinase-dead mice; however, they facilitated dopamine without affecting striatal glutamate in G2019S knock-in mice. GSK2578215A inhibited cortical glutamate release in G2019S knock-in mice. We conclude that LRRK2-IN-1 and GSK2578215A modulate exocytosis by blocking LRRK2 kinase activity, although their effects vary depending on the nerve terminal examined. The G2019S mutation unravels a dopamine-promoting action of LRRK2 inhibitors while blunting their effects on glutamate release, which highlights their positive potential for the treatment of PD, especially of LRRK2 mutation carriers.


Assuntos
Aminopiridinas/farmacologia , Benzamidas/farmacologia , Benzodiazepinonas/farmacologia , Corpo Estriado/citologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Pirimidinas/farmacologia , Córtex Visual/citologia , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Dopamina/metabolismo , Exocitose , Técnicas de Introdução de Genes , Ácido Glutâmico/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/química , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Masculino , Camundongos , Fosforilação , Serina/metabolismo , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Córtex Visual/efeitos dos fármacos , Córtex Visual/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA