Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1211336, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37359538

RESUMO

The colonic mucus bilayer is the first line of innate host defense that at the same time houses and nourishes the commensal microbiota. The major components of mucus secreted by goblet cells are MUC2 mucin and the mucus-associated protein, FCGBP (IgGFc-binding protein). In this study, we determine if FCGBP and MUC2 mucin were biosynthesized and interacted together to spatially enhance the structural integrity of secreted mucus and its role in epithelial barrier function. MUC2 and FCGBP were coordinately regulated temporally in goblet-like cells and in response to a mucus secretagogue but not in CRISPR-Cas9 gene-edited MUC2 KO cells. Whereas ~85% of MUC2 was colocalized with FCGBP in mucin granules, ~50% of FCGBP was diffusely distributed in the cytoplasm of goblet-like cells. STRING-db v11 analysis of the mucin granule proteome revealed no protein-protein interaction between MUC2 and FCGBP. However, FCGBP interacted with other mucus-associated proteins. FCGBP and MUC2 interacted via N-linked glycans and were non-covalently bound in secreted mucus with cleaved low molecular weight FCGBP fragments. In MUC2 KO, cytoplasmic FCGBP was significantly increased and diffusely distributed in wounded cells that healed by enhanced proliferation and migration within 2 days, whereas, in WT cells, MUC2 and FCGBP were highly polarized at the wound margin which impeded wound closure by 6 days. In DSS colitis, restitution and healed lesions in Muc2+/+ but not Muc2-/- littermates, were accompanied by a rapid increase in Fcgbp mRNA and delayed protein expression at 12- and 15-days post DSS, implicating a potential novel endogenous protective role for FCGBP in wound healing to maintain epithelial barrier function.


Assuntos
Colite , Mucinas , Colite/metabolismo , Células Caliciformes/metabolismo , Mucinas/metabolismo , Cicatrização , Animais , Camundongos
2.
Gastroenterology ; 164(2): 228-240, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36183751

RESUMO

BACKGROUND & AIMS: Inflammatory bowel diseases (IBD) are affected by dietary factors, including nondigestible carbohydrates (fibers), which are fermented by colonic microbes. Fibers are overall beneficial, but not all fibers are alike, and some patients with IBD report intolerance to fiber consumption. Given reproducible evidence of reduced fiber-fermenting microbes in patients with IBD, we hypothesized that fibers remain intact in select patients with reduced fiber-fermenting microbes and can then bind host cell receptors, subsequently promoting gut inflammation. METHODS: Colonic biopsies cultured ex vivo and cell lines in vitro were incubated with oligofructose (5 g/L), or fermentation supernatants (24-hour anaerobic fermentation) and immune responses (cytokine secretion [enzyme-linked immunosorbent assay/meso scale discovery] and expression [quantitative polymerase chain reaction]) were assessed. Influence of microbiota in mediating host response was examined and taxonomic classification of microbiota was conducted with Kraken2 and metabolic profiling by HUMAnN2, using R software. RESULTS: Unfermented dietary ß-fructan fibers induced proinflammatory cytokines in a subset of IBD intestinal biopsies cultured ex vivo, and immune cells (including peripheral blood mononuclear cells). Results were validated in an adult IBD randomized controlled trial examining ß-fructan supplementation. The proinflammatory response to intact ß-fructan required activation of the NLRP3 and TLR2 pathways. Fermentation of ß-fructans by human gut whole microbiota cultures reduced the proinflammatory response, but only when microbes were collected from patients without IBD or patients with inactive IBD. Fiber-induced immune responses correlated with microbe functions, luminal metabolites, and dietary fiber avoidance. CONCLUSION: Although fibers are typically beneficial in individuals with normal microbial fermentative potential, some dietary fibers have detrimental effects in select patients with active IBD who lack fermentative microbe activities. The study is publicly accessible at the U.S. National Institutes of Health database (clinicaltrials.gov identification number NCT02865707).


Assuntos
Frutanos , Doenças Inflamatórias Intestinais , Adulto , Humanos , Leucócitos Mononucleares , Intestinos , Fibras na Dieta , Inflamação
3.
Front Immunol ; 13: 900553, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795683

RESUMO

Gasdermins (GSDMs) are a group of proteins that are cleaved by inflammatory caspases to induce pore formation in the plasma membrane to cause membrane permeabilization and lytic cell death or pyroptosis. All GSDMs share a conserved structure, containing a cytotoxic N-terminal (NT) pore-forming domain and a C-terminal (CT) repressor domain. Entamoeba histolytica (Eh) in contact with macrophages, triggers outside-in signaling to activate inflammatory caspase-4/1 via the noncanonical and canonical pathway to promote cleavage of gasdermin D (GSDMD). Cleavage of GSDMD removes the auto-inhibition that masks the active pore-forming NT domain in the full-length protein by interactions with GSDM-CT. The cleaved NT-GSDMD monomers then oligomerize to form pores in the plasma membrane to facilitate the release of IL-1ß and IL-18 with a measured amount of pyroptosis. Pyroptosis is an effective way to counteract intracellular parasites, which exploit replicative niche to avoid killing. To date, most GSDMs have been verified to perform pore-forming activity and GSDMD-induced pyroptosis is rapidly emerging as a mechanism of anti-microbial host defence. Here, we review our comprehensive and current knowledge on the expression, activation, biological functions, and regulation of GSDMD cleavage with emphases on physiological scenario and related dysfunctions of each GSDM member as executioner of cell death, cytokine secretion and inflammation against Eh and other protozoan parasitic infections.


Assuntos
Entamoeba histolytica , Parasitos , Animais , Caspase 1 , Membrana Celular , Piroptose
4.
PLoS Pathog ; 18(3): e1010415, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35303042

RESUMO

A hallmark of Entamoeba histolytica (Eh) invasion in the gut is acute inflammation dominated by the secretion of pro-inflammatory cytokines TNF-α and IL-1ß. This is initiated when Eh in contact with macrophages in the lamina propria activates caspase-1 by recruiting the NLRP3 inflammasome complex in a Gal-lectin and EhCP-A5-dependent manner resulting in the maturation and secretion of IL-1ß and IL-18. Here, we interrogated the requirements and mechanisms for Eh-induced caspase-4/1 activation in the cleavage of gasdermin D (GSDMD) to regulate bioactive IL-1ß release in the absence of cell death in human macrophages. Unlike caspase-1, caspase-4 activation occurred as early as 10 min that was dependent on Eh Gal-lectin and EhCP-A5 binding to macrophages. By utilizing CRISPR-Cas9 gene edited CASP4/1, NLRP3 KO and ASC-def cells, caspase-4 activation was found to be independent of the canonical NLRP3 inflammasomes. In CRISPR-Cas9 gene edited CASP1 macrophages, caspase-4 activation was significantly up regulated that enhanced the enzymatic cleavage of GSDMD at the same cleavage site as caspase-1 to induce GSDMD pore formation and sustained bioactive IL-1ß secretion. Eh-induced IL-1ß secretion was independent of pyroptosis as revealed by pharmacological blockade of GSDMD pore formation and in CRISPR-Cas9 gene edited GSDMD KO macrophages. This was in marked contrast to the potent positive control, lipopolysaccharide + Nigericin that induced high expression of predominantly caspase-1 that efficiently cleaved GSDMD with high IL-1ß secretion/release associated with massive cell pyroptosis. These results reveal that Eh triggered "hyperactivated macrophages" allowed caspase-4 dependent cleavage of GSDMD and IL-1ß secretion to occur in the absence of pyroptosis that may play an important role in disease pathogenesis.


Assuntos
Entamoeba histolytica , Caspase 1/genética , Caspase 1/metabolismo , Caspases Iniciadoras/metabolismo , Entamoeba histolytica/metabolismo , Humanos , Interleucina-1beta , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Piroptose
5.
Am J Physiol Gastrointest Liver Physiol ; 321(5): G489-G499, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34494458

RESUMO

Goblet cells are specialized for the production and secretion of MUC2 glycoproteins that forms a thick layer covering the mucosal epithelium as a protective barrier against noxious substances and invading microbes. High MUC2 mucin biosynthesis induces endoplasmic reticulum (ER) stress and apoptosis in goblet cells during inflammatory and infectious diseases. Autophagy is an intracellular degradation process required for maintenance of intestinal homeostasis. In this study, we hypothesized that autophagy was triggered during high MUC2 mucin biosynthesis from colonic goblet cells to cope with metabolic stress. To interrogate this, we analyzed the autophagy process in high MUC2-producing human HT29-H and a clone HT29-L silenced for MUC2 expression by lentivirus-mediated shRNA, and WT and CRISPR/Cas9 MUC2 KO LS174T cells. Autophagy was constitutively increased in high MUC2-producing cells characterized by elevated pULK1S555 expression and increased numbers of autophagosomes as compared with MUC2 silenced or gene edited cells. Similarly, colonoids from Muc2+/+ but not Muc2-/- littermates differentiated into goblet cells showed increased autophagy. IL-22 treatment corrected misfolded MUC2 protein and alleviated the autophagy process in LS174T cells. This study highlights that autophagy plays an essential role in goblet cells to survive during high mucin biosynthesis by regulating cellular homeostasis.NEW & NOTEWORTHY It is unclear how colonic goblet cells survive by producing high output MUC2 mucin that triggers endoplasmic stress by misfolded MUC2 proteins. To cope with metabolic stress, we interrogated if autophagy played an essential role in regulating cellular homeostasis. Indeed, high MUC2 mucin biosynthesis dysregulated autophagy processes that was regulated by IL-22 to maintain gut barrier innate host defenses.


Assuntos
Autofagia , Colo/metabolismo , Estresse do Retículo Endoplasmático , Metabolismo Energético , Células Caliciformes/metabolismo , Mucina-2/biossíntese , Animais , Autofagia/efeitos dos fármacos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Colo/efeitos dos fármacos , Colo/ultraestrutura , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Feminino , Células Caliciformes/efeitos dos fármacos , Células Caliciformes/ultraestrutura , Células HT29 , Humanos , Interleucinas/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucina-2/genética , Fosforilação , Dobramento de Proteína , Transdução de Sinais , Interleucina 22
6.
PLoS Pathog ; 17(9): e1009936, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34499701

RESUMO

While Entamoeba histolytica (Eh)-induced pro-inflammatory responses are critical in disease pathogenesis, the downstream signaling pathways that subsequently dampens inflammation and the immune response remains unclear. Eh in contact with macrophages suppresses NF-κB signaling while favoring NLRP3-dependent pro-inflammatory cytokine production by an unknown mechanism. Cullin-1 and cullin-5 (cullin-1/5) assembled into a multi-subunit RING E3 ubiquitin ligase complex are substrates for neddylation that regulates the ubiquitination pathway important in NF-κB activity and pro-inflammatory cytokine production. In this study, we showed that upon live Eh contact with human macrophages, cullin-1/4A/4B/5 but not cullin-2/3, were degraded within 10 minutes. Similar degradation of cullin-1/5 were observed from colonic epithelial cells and proximal colonic loops tissues of mice inoculated with live Eh. Degradation of cullin-1/5 was dependent on Eh-induced activation of caspase-1 via the NLRP3 inflammasome. Unlike cullin-4B, the degradation of cullin-4A was partially dependent on caspase-1 and was inhibited with a pan caspase inhibitor. Cullin-1/5 degradation was dependent on Eh cysteine proteinases EhCP-A1 and EhCP-A4, but not EhCP-A5, based on pharmacological inhibition of the cysteine proteinases and EhCP-A5 deficient parasites. siRNA silencing of cullin-1/5 decreased the phosphorylation of pIκ-Bα in response to Eh and LPS stimulation and downregulated NF-κB-dependent TNF-α mRNA expression and TNF-α and MCP-1 pro-inflammatory cytokine production. These results unravel a unique outside-in strategy employed by Eh to attenuate NF-κB-dependent pro-inflammatory responses via NLRP3 activation of caspase-1 that degraded cullin-1/5 from macrophages.


Assuntos
Caspase 1/metabolismo , Proteínas Culina/metabolismo , Entamebíase/metabolismo , Macrófagos/metabolismo , NF-kappa B/metabolismo , Animais , Entamoeba histolytica/imunologia , Entamoeba histolytica/metabolismo , Entamebíase/imunologia , Humanos , Camundongos , Transdução de Sinais/fisiologia
7.
Mucosal Immunol ; 14(5): 1038-1054, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33963264

RESUMO

The mechanism whereby Entamoeba histolytica (Eh) binding with macrophages at the intercellular junction triggers aggressive pro-inflammatory responses in disease pathogenesis is not well understood. The host intracellular protein degradation process autophagy and its regulatory proteins are involved in maintenance of cellular homeostasis and excessive inflammatory responses. In this study we unraveled how Eh hijacks the autophagy process in macrophages to dysregulate pro-inflammatory responses. Direct contact of live Eh with macrophages activated caspase-6 that induced rapid proteolytic degradation of the autophagy ATG16L1 protein complex independent of NLRP3 inflammasome and caspase-3/8 activation. Crohn's disease susceptible ATG16L1 T300A variant was highly susceptible to Eh-mediated degradation that augmented pro-inflammatory cytokines in mice. Quantitative proteomics revealed downregulation of autophagy and vesicle-mediated transport and upregulation of cysteine-type endopeptidase pathways in response to Eh. We conclude during Eh-macrophage outside-in signaling, ATG16L1 protein complex plays an overlooked regulatory role in shaping the pro-inflammatory landscape in amebiasis.


Assuntos
Autofagia , Entamoeba histolytica/fisiologia , Entamebíase/etiologia , Entamebíase/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Transdução de Sinais , Animais , Autofagia/imunologia , Biomarcadores , Caspases/genética , Caspases/metabolismo , Linhagem Celular , Biologia Computacional , Modelos Animais de Doenças , Suscetibilidade a Doenças , Entamebíase/patologia , Regulação da Expressão Gênica , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia , Humanos , Macrófagos/parasitologia , Camundongos , Proteoma , Proteômica/métodos , Interferência de RNA , RNA Interferente Pequeno/genética
8.
Cell Mol Gastroenterol Hepatol ; 11(1): 77-98, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32659381

RESUMO

BACKGROUND & AIMS: Alterations in intestinal MUC2 mucin and microbial diversity are closely linked with important intestinal pathologies; however, their impact on each other and on intestinal pathogenesis has been vaguely characterized. Therefore, it was of interest in this study to delineate distinct and cooperative function of commensal microbiota and the Muc2 mucus barrier in maintaining intestinal epithelial barrier function. METHODS: Muc2 mucin deficient (Muc2-/-) and sufficient (Muc2+/+) littermates were used as a model for assessing the role of Muc2. To quantify the role of the microbiota in disease pathogenesis, Muc2+/+ and Muc2-/- littermates were treated with a cocktail of antibiotics that reduced indigenous bacteria, and then fecal transplanted with littermate stool and susceptibility to dextran sulphate sodium (DSS) quantified. RESULTS: Although, Muc2+/+ and Muc2-/- littermates share similar phyla distribution as evidenced by 16S sequencing they maintain their distinctive gastrointestinal phenotypes. Basally, Muc2-/- showed low-grade colonic inflammation with high populations of inflammatory and tolerogenic immune cells that became comparable to Muc2+/+ littermates following antibiotic treatment. Antibiotics treatment rendered Muc2+/+ but not Muc2-/- littermates highly susceptibility to DSS-induced colitis that was ILC3 dependent. Muc2-/- microbiota was colitogenic to Muc2+/+ as it worsened DSS-induced colitis. Microbiota dependent inflammation was confirmed by bone-marrow chimera studies, as Muc2-/- receiving Muc2+/+ bone marrow showed no difference in their susceptibility toward DSS induced colitis. Muc2-/- microbiota exhibited presence of characteristic OTUs of specific bacterial populations that were transferrable to Muc2+/+ littermates. CONCLUSIONS: These results highlight a distinct role for Muc2 mucin in maintenance of healthy microbiota critical in shaping innate host defenses to promote intestinal homeostasis.


Assuntos
Colite/imunologia , Resistência à Doença/imunologia , Microbioma Gastrointestinal/imunologia , Imunidade nas Mucosas , Mucina-2/metabolismo , Animais , Antibacterianos/administração & dosagem , Colite/induzido quimicamente , Colite/patologia , Colo/efeitos dos fármacos , Colo/imunologia , Colo/microbiologia , Colo/patologia , Sulfato de Dextrana/administração & dosagem , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Knockout , Mucina-2/genética
9.
Nat Commun ; 11(1): 483, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980623

RESUMO

Inflammatory bowel disease is associated with changes in the mucosal barrier, increased intestinal permeability, and increased risk of infections and sepsis, but the underlying mechanisms are incompletely understood. Here, we show how continuous translocation of gut microbial components affects iron homeostasis and facilitates susceptibility to inflammation-associated sepsis. A sub-lethal dose of lipopolysaccharide results in higher mortality in Mucin 2 deficient (Muc2-/-) mice, and is associated with elevated circulatory iron load and increased bacterial translocation. Translocation of gut microbial components attenuates hepatic stearoyl CoA desaturase-1 activity, a key enzyme in hepatic de novo lipogenesis. The resulting reduction of hepatic saturated and unsaturated fatty acid levels compromises plasma membrane fluidity of red blood cells, thereby significantly reducing their life span. Inflammation in Muc2-/- mice alters erythrophagocytosis efficiency of splenic macrophages, resulting in an iron-rich milieu that promotes bacterial growth. Our study thus shows that increased intestinal permeability triggers a cascade of events resulting in increased bacterial growth and risk of sepsis.


Assuntos
Mucosa Intestinal/metabolismo , Ferro/metabolismo , Fígado/metabolismo , Sepse/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Animais , Permeabilidade da Membrana Celular , Citofagocitose , Modelos Animais de Doenças , Feminino , Microbioma Gastrointestinal , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/microbiologia , Mucosa Intestinal/microbiologia , Ferro/sangue , Lipogênese , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mucina-2/deficiência , Mucina-2/genética , Sepse/etiologia , Sepse/microbiologia
10.
Mucosal Immunol ; 13(2): 344-356, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31772322

RESUMO

Even though Entamoeba histolytica (Eh)-induced host pro-inflammatory responses play a critical role in disease, we know very little about the host factors that regulate this response. Direct contact between host cell and Eh signify the highest level of danger, and to eliminate this threat, the host immune system elicits an augmented immune response. To understand the mechanisms of this response, we investigated the induction and release of the endogenous alarmin molecule high-mobility group box 1 (HMGB1) that act as a pro-inflammatory cytokine and chemoattractant during Eh infection. Eh in contact with macrophage induced a dose- and time-dependent secretion of HMGB1 in the absence of cell death. Secretion of HMGB1 was facilitated by Eh surface Gal-lectin-activated phosphoinositide 3-kinase and nuclear factor-κB signaling and up-regulation of histone acetyltransferase activity to trigger acetylated HMGB1 translocation from the nucleus. Unlike lipopolysaccharide, Eh-induced HMGB1 release was independent of caspase-1-mediated inflammasome and gasdermin D pores. In vivo, Eh inoculation in specific pathogen-free but not germ-free mice was associated with high levels of pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin-1ß, and keratinocyte-derived chemokine, which was suppressed with HMGB1 neutralization. This study reveals that Eh-induced active secretion of the HMGB1 plays a key role in shaping the pro-inflammatory landscape critical in innate host defense against amebiasis.


Assuntos
Alarminas/metabolismo , Linfócitos T CD4-Positivos/imunologia , Entamoeba histolytica/fisiologia , Entamebíase/imunologia , Proteína HMGB1/metabolismo , Macrófagos/imunologia , Alarminas/genética , Animais , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/metabolismo , Caspase 1/metabolismo , Citocinas/metabolismo , Proteína HMGB1/genética , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Células THP-1
11.
Infect Immun ; 87(12)2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31527129

RESUMO

Epidemiological studies suggest frequent association of enteropathogenic bacteria with Entamoeba histolytica during symptomatic infection. In this study, we sought to determine if the interaction with enteropathogenic (EPEC) or nonpathogenic Escherichia coli (strain DH5α) could modify the virulence of E. histolytica to cause disease in animal models of amebiasis. In vitro studies showed a 2-fold increase in CaCo2 monolayer destruction when E. histolytica interacted with EPEC but not with E. coli DH5α for 2.5 h. This was associated with increased E. histolytica proteolytic activity as revealed by zymogram analysis and degradation of the E. histolytica CP-A1/5 (EhCP-A1/5) peptide substrate Z-Arg-Arg-pNC and EhCP4 substrate Z-Val-Val-Arg-AMC. Additionally, E. histolytica-EPEC interaction increased EhCP-A1, -A2, -A4, and -A5, Hgl, Apa, and Cox-1 mRNA expression. Despite the marked upregulation of E. histolytica virulence factors, nonsignificant macroscopic differences in amebic liver abscess development were observed at early stages in hamsters inoculated with either E. histolytica-EPEC or E. histolytica-E. coli DH5α. Histopathology of livers of E. histolytica-EPEC-inoculated animals revealed foci of acute inflammation 3 h postinoculation that progressively increased, producing large inflammatory reactions, ischemia, and necrosis with high expression of il-1ß, ifn-γ, and tnf-α proinflammatory cytokine genes compared with that in livers of E. histolytica-E. coli DH5α-inoculated animals. In closed colonic loops from mice, intense inflammation was observed with E. histolytica-EPEC manifested by downregulation of Math1 mRNA with a corresponding increase in the expression of Muc2 mucin and proinflammatory cytokine genes il-6, il-12, and mcp-1 These results demonstrate that E. histolytica/EPEC interaction enhanced the expression and production of key molecules associated with E. histolytica virulence, critical in pathogenesis and progression of disease.


Assuntos
Entamoeba histolytica/patogenicidade , Entamebíase/patologia , Escherichia coli Enteropatogênica/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Animais , Células CACO-2 , Linhagem Celular , Cricetinae , Cisteína Proteases/metabolismo , Citocinas/metabolismo , Entamoeba histolytica/microbiologia , Células HT29 , Humanos , Inflamação , Mesocricetus , Camundongos , Camundongos Endogâmicos C57BL , Mucina-2/metabolismo , Fatores de Virulência/biossíntese
12.
Nat Commun ; 10(1): 4306, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31541089

RESUMO

The mucus layer is the first line of innate host defense in the gut that protects the epithelium by spatially separating commensal bacteria. MUC2 mucin is produced and stored by goblet cells that is constitutively exocytosed or hyper secreted upon sensing a threat. How coordinated mucus exocytosis maintains homeostasis in the intestinal epithelium and modulates the immunological landscape remains elusive. Here we describe how the vesicle SNARE protein VAMP8 coordinates mucin exocytosis from goblet cells. Vamp8-/- exhibit a mild pro-inflammatory state basally due to an altered mucus layer and increased encounters with microbial antigens. Microbial diversity shifts to a detrimental microbiota with an increase abundance of pathogenic and mucolytic bacteria. To alleviate the heavy microbial burden and inflammatory state basally, Vamp8-/- skews towards tolerance. Despite this, Vamp8-/- is highly susceptible to both chemical and infectious colitis demonstrating the fragility of the intestinal mucosa without proper mucus exocytosis mechanisms.


Assuntos
Colo/metabolismo , Exocitose/fisiologia , Células Caliciformes/metabolismo , Mucosa Intestinal/metabolismo , Mucina-2/metabolismo , Proteínas R-SNARE/metabolismo , Animais , Biodiversidade , Colo/patologia , Citocinas/metabolismo , Células Caliciformes/patologia , Homeostase , Humanos , Intestinos/patologia , Camundongos Knockout , Microbiota , Mucina-2/genética , Muco/metabolismo , Fenótipo , Proteínas R-SNARE/genética , Proteínas SNARE/metabolismo
13.
Infect Immun ; 87(11)2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31427448

RESUMO

Entamoeba histolytica is an anaerobic parasitic protozoan and the causative agent of amoebiasis. E. histolytica expresses proteins that are structurally homologous to human proteins and uses them as virulence factors. We have previously shown that E. histolytica binds exogenous interferon gamma (IFN-γ) on its surface, and in this study, we explored whether exogenous IFN-γ could modulate parasite virulence. We identified an IFN-γ receptor-like protein on the surface of E. histolytica trophozoites by using anti-IFN-γ receptor 1 (IFN-γR1) antibody and performing immunofluorescence, Western blot, protein sequencing, and in silico analyses. Coupling of human IFN-γ to the IFN-γ receptor-like protein on live E. histolytica trophozoites significantly upregulated the expression of E. histolytica cysteine protease A1 (EhCP-A1), EhCP-A2, EhCP-A4, EhCP-A5, amebapore A (APA), cyclooxygenase 1 (Cox-1), Gal-lectin (Hgl), and peroxiredoxin (Prx) in a time-dependent fashion. IFN-γ signaling via the IFN-γ receptor-like protein enhanced E. histolytica's erythrophagocytosis of human red blood cells, which was abrogated by the STAT1 inhibitor fludarabine. Exogenous IFN-γ enhanced chemotaxis of E. histolytica, its killing of Caco-2 colonic and Hep G2 liver cells, and amebic liver abscess formation in hamsters. These results demonstrate that E. histolytica expresses a surface IFN-γ receptor-like protein that is functional and may play a role in disease pathogenesis and/or immune evasion.


Assuntos
Entamoeba histolytica/metabolismo , Proteínas de Protozoários/metabolismo , Receptores de Interferon/química , Amebíase/imunologia , Amebíase/parasitologia , Animais , Células CACO-2 , Sobrevivência Celular , Cricetinae , Células Hep G2 , Humanos , Interferon gama/farmacologia , Masculino , Fagocitose , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Receptor de Interferon gama
14.
Mucosal Immunol ; 12(2): 323-339, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30361535

RESUMO

During invasion, Entamoeba histolytica (Eh) encounter macrophages and activate them to elicit tissue damaging pro-inflammatory responses. When Eh binds macrophages via the Gal-lectin, surface EhCP-A5 RGD sequence ligates α5ß1 integrin to activate caspase-1 in a complex known as the NLRP3 inflammasome. In this study, we investigated Eh requirements underlying macrophage caspase-4 and -1 activation and the role caspase-4 and gasdermin D (GSDMD) play in augmenting pro-inflammatory cytokine responses. Caspase-4 activation was similar to caspase-1 requiring live Eh attachment via the Gal-lectin and EhCP-A5. However, unlike caspase-1, caspase-4 activation was independent of ASC and NLRP3. Using CRISPR/Cas9 gene editing of caspase-4 and -1 and GSDMD, we determined that caspase-1 and bioactive IL-1ß release was highly dependent on caspase-4 activation and cleavage of GSDMD in response to Eh. Formaldehyde cross-linking to stabilize protein-protein interactions in transfected COS-7 cells stimulated with Eh revealed that caspase-4 specifically interacted with caspase-1 in a protein complex that enhanced the cleavage of caspase-1 CARD domains to augment IL-1ß release. Activated caspase-4 and -1 cleaved GSDMD liberating the N-terminal p30 pore-forming fragment that caused the secretion of IL-1ß. These findings reveal a novel role for caspase-4 as a sensor molecule to amplify pro-inflammatory responses when macrophage encounters Eh.


Assuntos
Caspases Iniciadoras/metabolismo , Entamoeba histolytica/fisiologia , Entamebíase/imunologia , Interleucina-1beta/metabolismo , Macrófagos/imunologia , Proteínas de Neoplasias/metabolismo , Animais , Células COS , Caspase 1/metabolismo , Caspases Iniciadoras/genética , Chlorocebus aethiops , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Integrina alfa5beta1/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Ligação a Fosfato , Células THP-1
15.
PLoS Pathog ; 14(11): e1007466, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30500860

RESUMO

Amebiasis is caused by the protozoan parasite Entamoeba histolytica (Eh), a potentially fatal disease occurring mainly in developing countries. How Eh interacts with innate host factors in the gut is poorly understood. Eh resides and feed in/on the outer colonic mucus layer and thus share an ecological niche with indigenous microbiota. As gut microbiota regulates innate immune responses, in this study we characterized the cooperative roles that microbiota and the mucus layer play in Eh-induced pro-inflammatory responses in the colon. To study this, we used antibiotics treated and non-treated specific pathogen free Muc2-/- and Muc2+/+ littermates and germ-free mice inoculated with Eh in colonic loops as a short infection model. In antibiotic treated Muc2-/- and Muc2+/+ littermates, Eh elicited robust mucus and water secretions, enhanced pro-inflammatory cytokines and chemokine expression with elevated MPO activity and higher pathology scores as compared to the modest response observed in non-antibiotic treated littermates. Host responses were microbiota specific as mucus secretion and pro-inflammatory responses were attenuated following homologous fecal microbial transplants in antibiotic-treated Muc2+/+ quantified by secretion of 3H-glucosamine newly synthesized mucin, Muc2 mucin immunostaining and immunohistochemistry. Eh-elicited pro-inflammatory responses and suppressed goblet cell transcription factor Math1 as revealed by in vivo imaging of Eh-colonic loops in Math1GFP mice, and in vitro using Eh-stimulated LS174T human colonic goblet cells. Eh in colonic loops increased bacterial translocation of bioluminescent E. coli and indigenous bacteria quantified by FISH and quantitative PCR. In germ-free animals, Eh-induced mucus/water secretory responses, but acute pro-inflammatory responses and MPO activity were severely impaired, allowing the parasite to bind to and disrupt mucosal epithelial cells. These findings have identified key roles for intestinal microbiota and mucus in regulating innate host defenses against Eh, and implicate dysbiosis as a risk factor for amebiasis that leads to exacerbated immune responses to cause life-threatening disease.


Assuntos
Entamoeba histolytica/metabolismo , Microbioma Gastrointestinal/imunologia , Mucina-2/imunologia , Animais , Linhagem Celular , Colo/metabolismo , Colo/patologia , Entamoeba histolytica/imunologia , Entamoeba histolytica/patogenicidade , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Células Caliciformes/metabolismo , Humanos , Imunidade Inata/imunologia , Inflamação/patologia , Mucosa Intestinal/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microbiota , Mucina-1 , Mucinas/metabolismo
17.
Am J Pathol ; 188(9): 2025-2041, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29935164

RESUMO

Intestinal epithelial cell wound healing involves cell migration, proliferation, and differentiation. Although numerous studies have analyzed the migration of absorptive epithelial cells during wound healing, it remains unclear how goblet cells restitute and how MUC2 mucin production affects this process. In this study, we examined the role of high MUC2 production in goblet cell migration during wound healing and demonstrated that during high MUC2 output, goblet cells migrated slower because of impaired production of wound healing factors and endoplasmic reticulum (ER) stress. Two goblet cell lines, HT29-H and HT29-L, that produced high and low MUC2 mucin, respectively, were used. HT29-L healed wounds faster than HT29-H cells by producing significantly higher amounts of fibroblast growth factor (FGF) 1, FGF2, vascular endothelial growth factor-C, and matrix metallopeptidase 1. Predictably, treatment of HT29-H cells with recombinant FGF2 significantly enhanced migration and wound healing. High MUC2 biosynthesis in HT29-H cells induced ER stress and delayed migration that was abrogated by inhibiting ER stress with tauroursodeoxycholic acid and IL-22. FGF2- and IL-22-induced wound repair was dependent on STAT1 and STAT3 signaling. During wound healing after dextran sulfate sodium-induced colitis, restitution of Math1M1GFP+ goblet cells occurred earlier in the proximal colon, followed by the middle and then distal colon, where ulceration was severe. We conclude that high MUC2 output during colitis impairs goblet cell migration and wound healing by reducing production of growth factors critical in wound repair.


Assuntos
Colite/patologia , Estresse do Retículo Endoplasmático , Células Caliciformes/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mucina-2/metabolismo , Cicatrização , Animais , Movimento Celular , Proliferação de Células , Colite/induzido quimicamente , Colite/metabolismo , Sulfato de Dextrana/toxicidade , Células HT29 , Humanos , Camundongos
18.
Infect Immun ; 86(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29685982

RESUMO

Enteric α-defensins, termed cryptdins (Crps) in mice, and lysozymes secreted by Paneth cells contribute to innate host defense in the ileum. Antimicrobial factors, including lysozymes and ß-defensins, are often embedded in luminal glycosylated colonic Muc2 mucin secreted by goblet cells that form the protective mucus layer critical for gut homeostasis and pathogen invasion. In this study, we investigated ileal innate immunity against Entamoeba histolytica, the causative agent of intestinal amebiasis, by inoculating parasites in closed ileal loops in Muc2+/+ and Muc2-/- littermates and quantifying Paneth cell localization (lysozyme expression) and function (Crp secretion). Relative to Muc2+/+ littermates, Muc2-/- littermates showed a disorganized mislocalization of Paneth cells that was diffusely distributed, with elevated lysozyme secretion in the crypts and on villi in response to E. histolytica Inhibition of E. histolytica Gal/GalNAc lectin (Gal-lectin) binding with exogenous galactose and Entamoeba histolytica cysteine proteinase 5 (EhCP5)-negative E. histolytica had no effect on parasite-induced erratic Paneth cell lysozyme synthesis. Although the basal ileal expression of Crp genes was unaffected in Muc2-/- mice in response to E. histolytica, there was a robust release of proinflammatory cytokines and Crp peptide secretions in luminal exudates that was also present in the colon. Interestingly, E. histolytica-secreted cysteine proteinases cleaved the proregion of Crp4 but not the active form. These findings define Muc2 mucin as an essential component of ileal barrier function that regulates the localization and function of Paneth cells critical for host defense against microbes.


Assuntos
Defensinas/metabolismo , Entamoeba histolytica/metabolismo , Entamoeba histolytica/patogenicidade , Mucinas/deficiência , Mucinas/metabolismo , Muramidase/metabolismo , Celulas de Paneth/metabolismo , Animais , Proliferação de Células/fisiologia , Interações Hospedeiro-Parasita , Humanos , Camundongos
19.
Am J Pathol ; 188(6): 1354-1373, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29545196

RESUMO

MUC2 mucin is a large glycoprotein produced by goblet cells that forms the protective mucus blanket overlying the intestinal epithelium as the first line of innate host defense. High MUC2 production in inflammatory bowel disease and infectious colitis depletes goblet cells and the mucus layer by an unknown mechanism. Herein, we analyzed the effect of high MUC2 biosynthesis on endoplasmic reticulum (ER) stress and apoptosis in goblet cells using a high MUC2-producing human goblet cell line (HT29-H) and an HT29-H clone (HT29-L) silenced for MUC2 expression by lentivirus-mediated shRNA. Goblet cell ER stress and apoptosis were quantified during early onset of dextran sulfate sodium-induced colitis in C57BL/6 and Math1M1GFP mice. Compared with HT29-L and MUC2 nonproducing Caco-2 cells, high MUC2-producing HT29-H cells had significantly increased ER stress and apoptosis after treatment with ER stress-inducing agents. Apoptosis was driven by increased misfolded MUC2 that triggered elevated levels of reactive oxygen species. Correcting MUC2 folding and inhibiting reactive oxygen species alleviated ER stress and rescued cells from apoptosis. During early-onset colitis, mucus hypersecretion caused severe ER stress and apoptosis of goblet cells that preceded absorptive epithelial cell damage. Thus, in gastrointestinal inflammation, high MUC2 biosynthesis and goblet cell apoptosis lead to a dysfunctional epithelial barrier. Enhancing MUC2 folding may help alleviate goblet cell depletion and maintain mucosal integrity.


Assuntos
Apoptose , Estresse do Retículo Endoplasmático , Células Caliciformes/patologia , Mucina-2/química , Mucina-2/metabolismo , Dobramento de Proteína , Espécies Reativas de Oxigênio/metabolismo , Animais , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Sulfato de Dextrana/toxicidade , Células Caliciformes/metabolismo , Células HT29 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mucina-2/genética
20.
Artigo em Inglês | MEDLINE | ID: mdl-30687644

RESUMO

The intestinal protozoan parasite Entamoeba histolytica (Eh) causes amebiasis associated with severe diarrhea and/or liver abscess. Eh pathogenesis is multifactorial requiring both parasite virulent molecules and host-induced innate immune responses. Eh-induced host pro-inflammatory responses plays a critical role in disease pathogenesis by causing damage to tissues allowing parasites access to systemic sites. Eh cyclooxygenase (EhCox) derived prostaglandin E2 stimulates the chemokine IL-8 from mucosal epithelial cells that recruits neutrophils to the site of infection to exacerbate disease. At present, it is not known how EhCox is regulated or whether it affects the expression of other proteins in Eh. In this study, we found that gene silencing of EhCox (EhCoxgs) markedly increased endogenous cysteine protease (CP) protein expression and virulence without altering CP gene transcripts. Live virulent Eh pretreated with arachidonic acid substrate to enhance PGE2 production or aspirin to inhibit EhCox enzyme activity or addition of exogenous PGE2 to Eh had no effect on EhCP activity. Increased CP enzyme activity in EhCoxgs was stable and significantly enhanced erythrophagocytosis, cytopathic effects on colonic epithelial cells and elicited pro-inflammatory cytokines in mice colonic loops. Acute infection with EhCoxgs in colonic loops increased inflammation associated with high levels of myeloperoxidase activity. This study has identified EhCox protein as one of the important endogenous regulators of cysteine protease activity. Alterations of CP activity in response to Cox gene silencing may be a negative feedback mechanism in Eh to limit proteolytic activity during colonization that can inadvertently trigger inflammation in the gut.


Assuntos
Cisteína Proteases/biossíntese , Entamoeba histolytica/enzimologia , Entamoeba histolytica/crescimento & desenvolvimento , Células Epiteliais/parasitologia , Regulação da Expressão Gênica , Prostaglandina-Endoperóxido Sintases/metabolismo , Fatores de Virulência/biossíntese , Animais , Técnicas de Silenciamento de Genes , Camundongos , Prostaglandina-Endoperóxido Sintases/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA