Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 28(9): 2895-2909, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35080088

RESUMO

The growth and survival of individual trees determine the physical structure of a forest with important consequences for forest function. However, given the diversity of tree species and forest biomes, quantifying the multitude of demographic strategies within and across forests and the way that they translate into forest structure and function remains a significant challenge. Here, we quantify the demographic rates of 1961 tree species from temperate and tropical forests and evaluate how demographic diversity (DD) and demographic composition (DC) differ across forests, and how these differences in demography relate to species richness, aboveground biomass (AGB), and carbon residence time. We find wide variation in DD and DC across forest plots, patterns that are not explained by species richness or climate variables alone. There is no evidence that DD has an effect on either AGB or carbon residence time. Rather, the DC of forests, specifically the relative abundance of large statured species, predicted both biomass and carbon residence time. Our results demonstrate the distinct DCs of globally distributed forests, reflecting biogeography, recent history, and current plot conditions. Linking the DC of forests to resilience or vulnerability to climate change, will improve the precision and accuracy of predictions of future forest composition, structure, and function.


Assuntos
Mudança Climática , Clima Tropical , Biomassa , Demografia , Ecossistema
4.
Science ; 366(6471)2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31831643

RESUMO

Natural and seminatural ecosystems must be at the forefront of efforts to mitigate and adapt to climate change. In the urgency of current circumstances, ecosystem restoration represents a range of available, efficient, and effective solutions to cut net greenhouse gas emissions and adapt to climate change. Although mitigation success can be measured by monitoring changing fluxes of greenhouse gases, adaptation is more complicated to measure, and reductions in a wide range of risks for biodiversity and people must be evaluated. Progress has been made in the monitoring and evaluation of adaptation and mitigation measures, but more emphasis on testing the effectiveness of proposed strategies is necessary. It is essential to take an integrated view of mitigation, adaptation, biodiversity, and the needs of people, to realize potential synergies and avoid conflict between different objectives.

5.
Glob Chang Biol ; 23(6): 2272-2283, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28073167

RESUMO

Climate change is increasingly altering the composition of ecological communities, in combination with other environmental pressures such as high-intensity land use. Pressures are expected to interact in their effects, but the extent to which intensive human land use constrains community responses to climate change is currently unclear. A generic indicator of climate change impact, the community temperature index (CTI), has previously been used to suggest that both bird and butterflies are successfully 'tracking' climate change. Here, we assessed community changes at over 600 English bird or butterfly monitoring sites over three decades and tested how the surrounding land has influenced these changes. We partitioned community changes into warm- and cold-associated assemblages and found that English bird communities have not reorganized successfully in response to climate change. CTI increases for birds are primarily attributable to the loss of cold-associated species, whilst for butterflies, warm-associated species have tended to increase. Importantly, the area of intensively managed land use around monitoring sites appears to influence these community changes, with large extents of intensively managed land limiting 'adaptive' community reorganization in response to climate change. Specifically, high-intensity land use appears to exacerbate declines in cold-adapted bird and butterfly species, and prevent increases in warm-associated birds. This has broad implications for managing landscapes to promote climate change adaptation.


Assuntos
Aves , Borboletas , Mudança Climática , Animais , Clima , Humanos , Dinâmica Populacional , Temperatura
6.
Proc Biol Sci ; 276(1672): 3539-44, 2009 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-19625318

RESUMO

Taxonomic homogenization (TH) is the increasing similarity of the species composition of ecological communities over time. Such homogenization represents a form of biodiversity loss and can result from local species turnover. Evidence for TH is limited, reflecting a lack of suitable historical datasets, and previous analyses have generated contrasting conclusions. We present an analysis of woodland patches across a southern English county (Dorset) in which we quantified 70 years of change in the composition of vascular plant communities. We tested the hypotheses that over this time patches decreased in species richness, homogenized, or shifted towards novel communities. Although mean species richness at the patch scale did not change, we found increased similarity in species composition among woodlands over time. We concluded that the woodlands have undergone TH without experiencing declines in local diversity or shifts towards novel communities. Analysis of species characteristics suggested that these changes were not driven by non-native species invasions or climate change, but instead reflected reorganization of the native plant communities in response to eutrophication and increasingly shaded conditions. These analyses provide, to our knowledge, the first direct evidence of TH in the UK and highlight the potential importance of this phenomenon as a contributor to biodiversity loss.


Assuntos
Ecossistema , Plantas/classificação , Inglaterra , Dinâmica Populacional , Tempo
7.
Tree Physiol ; 28(6): 959-70, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18381276

RESUMO

Transpiration of two heterogeneous broad-leaved woodlands in southern England was monitored by the sap flux technique throughout the 2006 growing season. Grimsbury Wood, which had a leaf area index (LAI) of 3.9, was dominated by oak (Quercus robur L.) and birch (Betula pubescens L.) and had a continuous hazel (Corylus avellana L.) understory. Wytham Woods, which had an LAI of 3.6, was dominated by ash (Fraxinus excelsior L.) and sycamore (Acer pseudoplatanus L.) and had only a sparse understory. Annual canopy transpiration was 367 mm for Grimsbury Wood and 397 mm for Wytham Woods. These values were similar to those for beech (Fagus sylvatica L.) plantations in the same region, and differ from one another by less than the typical margin of uncertainty of the sap flux technique. Canopy conductance (g(c)), calculated for both woodlands by inverting the Penman-Monteith equation, was related to incoming solar radiation (R(G)) and the vapor pressure deficit (D). The response of g(c) to R(G) was similar for both forests. Both reference conductance (g(cref)), defined as g(c) at D=1 kPa, and stomatal sensitivity (-m), defined as the slope of the logarithmic response curve of g(c) to D, increased during the growing season at Wytham Woods but not at Grimsbury Wood. The -m/g(cref) ratio was significantly lower at Wytham Woods than at Grimsbury Wood and was insufficient to keep the difference between leaf and soil water potentials constant, according to a simple hydraulic model. This meant that annual water consumption of the two woodlands was similar despite different regulatory mechanisms and associated short-term variations in canopy transpiration. The -m/g(cref) ratio depended on the range of D under which the measurements were made. This was shown to be particularly important for studies conducted under low and narrow ranges of D.


Assuntos
Folhas de Planta/fisiologia , Transpiração Vegetal/fisiologia , Árvores/fisiologia , Acer/fisiologia , Betula/fisiologia , Inglaterra , Fraxinus/fisiologia , Quercus/fisiologia , Estações do Ano , Especificidade da Espécie , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA