Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
ArXiv ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38764594

RESUMO

The COVID-19 pandemic led to a large global effort to sequence SARS-CoV-2 genomes from patient samples to track viral evolution and inform public health response. Millions of SARS-CoV-2 genome sequences have been deposited in global public repositories. The Canadian COVID-19 Genomics Network (CanCOGeN - VirusSeq), a consortium tasked with coordinating expanded sequencing of SARS-CoV-2 genomes across Canada early in the pandemic, created the Canadian VirusSeq Data Portal, with associated data pipelines and procedures, to support these efforts. The goal of VirusSeq was to allow open access to Canadian SARS-CoV-2 genomic sequences and enhanced, standardized contextual data that were unavailable in other repositories and that meet FAIR standards (Findable, Accessible, Interoperable and Reusable). The Portal data submission pipeline contains data quality checking procedures and appropriate acknowledgement of data generators that encourages collaboration. Here we also highlight Duotang, a web platform that presents genomic epidemiology and modeling analyses on circulating and emerging SARS-CoV-2 variants in Canada. Duotang presents dynamic changes in variant composition of SARS-CoV-2 in Canada and by province, estimates variant growth, and displays complementary interactive visualizations, with a text overview of the current situation. The VirusSeq Data Portal and Duotang resources, alongside additional analyses and resources computed from the Portal (COVID-MVP, CoVizu), are all open-source and freely available. Together, they provide an updated picture of SARS-CoV-2 evolution to spur scientific discussions, inform public discourse, and support communication with and within public health authorities. They also serve as a framework for other jurisdictions interested in open, collaborative sequence data sharing and analyses.

2.
Viruses ; 16(3)2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38543708

RESUMO

Throughout the SARS-CoV-2 pandemic, several variants of concern (VOCs) have been identified, many of which share recurrent mutations in the spike glycoprotein's receptor-binding domain (RBD). This region coincides with known epitopes and can therefore have an impact on immune escape. Protracted infections in immunosuppressed patients have been hypothesized to lead to an enrichment of such mutations and therefore drive evolution towards VOCs. Here, we present the case of an immunosuppressed patient that developed distinct populations with immune escape mutations throughout the course of their infection. Notably, by investigating the co-occurrence of substitutions on individual sequencing reads in the RBD, we found quasispecies harboring mutations that confer resistance to known monoclonal antibodies (mAbs) such as S:E484K and S:E484A. These mutations were acquired without the patient being treated with mAbs nor convalescent sera and without them developing a detectable immune response to the virus. We also provide additional evidence for a viral reservoir based on intra-host phylogenetics, which led to a viral substrain that evolved elsewhere in the patient's body, colonizing their upper respiratory tract (URT). The presence of SARS-CoV-2 viral reservoirs can shed light on protracted infections interspersed with periods where the virus is undetectable, and potential explanations for long-COVID cases.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Síndrome de COVID-19 Pós-Aguda , Soroterapia para COVID-19 , Hospedeiro Imunocomprometido , Anticorpos Monoclonais , Mutação , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Antivirais , Anticorpos Neutralizantes
3.
BMC Biol ; 21(1): 99, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143068

RESUMO

BACKGROUND: Diplonemid flagellates are among the most abundant and species-rich of known marine microeukaryotes, colonizing all habitats, depths, and geographic regions of the world ocean. However, little is known about their genomes, biology, and ecological role. RESULTS: We present the first nuclear genome sequence from a diplonemid, the type species Diplonema papillatum. The ~ 280-Mb genome assembly contains about 32,000 protein-coding genes, likely co-transcribed in groups of up to 100. Gene clusters are separated by long repetitive regions that include numerous transposable elements, which also reside within introns. Analysis of gene-family evolution reveals that the last common diplonemid ancestor underwent considerable metabolic expansion. D. papillatum-specific gains of carbohydrate-degradation capability were apparently acquired via horizontal gene transfer. The predicted breakdown of polysaccharides including pectin and xylan is at odds with reports of peptides being the predominant carbon source of this organism. Secretome analysis together with feeding experiments suggest that D. papillatum is predatory, able to degrade cell walls of live microeukaryotes, macroalgae, and water plants, not only for protoplast feeding but also for metabolizing cell-wall carbohydrates as an energy source. The analysis of environmental barcode samples shows that D. papillatum is confined to temperate coastal waters, presumably acting in bioremediation of eutrophication. CONCLUSIONS: Nuclear genome information will allow systematic functional and cell-biology studies in D. papillatum. It will also serve as a reference for the highly diverse diplonemids and provide a point of comparison for studying gene complement evolution in the sister group of Kinetoplastida, including human-pathogenic taxa.


Assuntos
Eucariotos , Kinetoplastida , Humanos , Eucariotos/genética , Prófase Meiótica I , Euglenozoários/genética , Kinetoplastida/genética , Família Multigênica , Filogenia
4.
Cell Rep ; 38(9): 110429, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35216664

RESUMO

Continuous emergence of SARS-CoV-2 variants of concern (VOCs) is fueling the COVID-19 pandemic. Omicron (B.1.1.529) rapidly spread worldwide. The large number of mutations in its Spike raise concerns about a major antigenic drift that could significantly decrease vaccine efficacy and infection-induced immunity. A long interval between BNT162b2 mRNA doses elicits antibodies that efficiently recognize Spikes from different VOCs. Here, we evaluate the recognition of Omicron Spike by plasma from a cohort of SARS-CoV-2 naive and previously infected individuals who received their BNT162b2 mRNA vaccine 16 weeks apart. Omicron Spike is recognized less efficiently than D614G, Alpha, Beta, Gamma, and Delta Spikes. We compare with plasma activity from participants receiving a short (4 weeks) interval regimen. Plasma from individuals of the long-interval cohort recognize and neutralize better the Omicron Spike compared with those who received a short interval. Whether this difference confers any clinical benefit against Omicron remains unknown.


Assuntos
Anticorpos Neutralizantes/sangue , Vacina BNT162/administração & dosagem , Esquemas de Imunização , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Idoso , Anticorpos Neutralizantes/análise , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/análise , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Vacina BNT162/imunologia , Estudos de Coortes , Feminino , Células HEK293 , Humanos , Imunização Secundária/métodos , Masculino , Pessoa de Meia-Idade , Quebeque , SARS-CoV-2/patogenicidade , Fatores de Tempo , Vacinação/métodos , Potência de Vacina , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Adulto Jovem , Vacinas de mRNA/administração & dosagem , Vacinas de mRNA/imunologia
5.
Viruses ; 14(1)2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35062348

RESUMO

The rapid emergence of SARS-CoV-2 variants is fueling the recent waves of the COVID-19 pandemic. Here, we assessed ACE2 binding and antigenicity of Mu (B.1.621) and A.2.5 Spikes. Both these variants carry some mutations shared by other emerging variants. Some of the pivotal mutations such as N501Y and E484K in the receptor-binding domain (RBD) detected in B.1.1.7 (Alpha), B.1.351 (Beta) and P.1 (Gamma) are now present within the Mu variant. Similarly, the L452R mutation of B.1.617.2 (Delta) variant is present in A.2.5. In this study, we observed that these Spike variants bound better to the ACE2 receptor in a temperature-dependent manner. Pseudoviral particles bearing the Spike of Mu were similarly neutralized by plasma from vaccinated individuals than those carrying the Beta (B.1.351) and Delta (B.1.617.2) Spikes. Altogether, our results indicate the importance of measuring critical parameters such as ACE2 interaction, plasma recognition and neutralization ability of each emerging variant.


Assuntos
SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Células HEK293 , Humanos , Mutação , Testes de Neutralização , Ligação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Temperatura
6.
Emerg Infect Dis ; 27(11): 2810-2817, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34670643

RESUMO

This retrospective multicenter cohort study assessed temporal changes in the severity and mortality rate of blastomycosis in Quebec, Canada, and identified risk factors for death in patients with blastomycosis in 1988-2016. The primary outcome was 90-day all-cause deaths. Among 185 patients, 122 (66%) needed hospitalization and 30 (16%) died. We noted increases in the proportion of severe cases, in age at diagnosis and in the proportion of diabetic and immunocompromised patients over time. Independent risk factors for death were age (adjusted odds ratio [aOR] 1.04, 95% CI 1.00-1.07), immunosuppression (aOR 4.2, 95% CI 1.5-11.6), and involvement of >2 lung lobes (aOR 5.3, 95% CI 1.9-14.3). There was no association between the Blastomyces genotype group and all-cause mortality. The proportion of severe cases of blastomycosis has increased in Quebec over the past 30 years, partially explained by the higher number of immunosuppressed patients.


Assuntos
Blastomyces , Blastomicose , Blastomicose/epidemiologia , Estudos de Coortes , Humanos , Quebeque/epidemiologia , Estudos Retrospectivos , Índice de Gravidade de Doença
7.
Genome Med ; 13(1): 169, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34706766

RESUMO

BACKGROUND: Québec was the Canadian province most impacted by COVID-19, with 401,462 cases as of September 24th, 2021, and 11,347 deaths due mostly to a very severe first pandemic wave. In April 2020, we assembled the Coronavirus Sequencing in Québec (CoVSeQ) consortium to sequence SARS-CoV-2 genomes in Québec to track viral introduction events and transmission within the province. METHODS: Using genomic epidemiology, we investigated the arrival of SARS-CoV-2 to Québec. We report 2921 high-quality SARS-CoV-2 genomes in the context of > 12,000 publicly available genomes sampled globally over the first pandemic wave (up to June 1st, 2020). By combining phylogenetic and phylodynamic analyses with epidemiological data, we quantify the number of introduction events into Québec, identify their origins, and characterize the spatiotemporal spread of the virus. RESULTS: Conservatively, we estimated approximately 600 independent introduction events, the majority of which happened from spring break until 2 weeks after the Canadian border closed for non-essential travel. Subsequent mass repatriations did not generate large transmission lineages (> 50 sequenced cases), likely due to mandatory quarantine measures in place at the time. Consistent with common spring break and "snowbird" destinations, most of the introductions were inferred to have originated from Europe via the Americas. Once introduced into Québec, viral lineage sizes were overdispersed, with a few lineages giving rise to most infections. Consistent with founder effects, the earliest lineages to arrive tended to spread most successfully. Fewer than 100 viral introductions arrived during spring break, of which 7-12 led to the largest transmission lineages of the first wave (accounting for 52-75% of all sequenced infections). These successful transmission lineages dispersed widely across the province. Transmission lineage size was greatly reduced after March 11th, when a quarantine order for returning travellers was enacted. While this suggests the effectiveness of early public health measures, the biggest transmission lineages had already been ignited prior to this order. CONCLUSIONS: Combined, our results reinforce how, in the absence of tight travel restrictions or quarantine measures, fewer than 100 viral introductions in a week can ensure the establishment of extended transmission chains.


Assuntos
COVID-19/transmissão , COVID-19/epidemiologia , COVID-19/virologia , Canadá/epidemiologia , Europa (Continente)/epidemiologia , Genoma Viral , Humanos , Epidemiologia Molecular , Pandemias , Filogenia , Saúde Pública , Quebeque/epidemiologia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Viagem
8.
J Biol Chem ; 297(4): 101151, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34478710

RESUMO

The seasonal nature of outbreaks of respiratory viral infections with increased transmission during low temperatures has been well established. Accordingly, temperature has been suggested to play a role on the viability and transmissibility of SARS-CoV-2, the virus responsible for the COVID-19 pandemic. The receptor-binding domain (RBD) of the Spike glycoprotein is known to bind to its host receptor angiotensin-converting enzyme 2 (ACE2) to initiate viral fusion. Using biochemical, biophysical, and functional assays to dissect the effect of temperature on the receptor-Spike interaction, we observed a significant and stepwise increase in RBD-ACE2 affinity at low temperatures, resulting in slower dissociation kinetics. This translated into enhanced interaction of the full Spike glycoprotein with the ACE2 receptor and higher viral attachment at low temperatures. Interestingly, the RBD N501Y mutation, present in emerging variants of concern (VOCs) that are fueling the pandemic worldwide (including the B.1.1.7 (α) lineage), bypassed this requirement. This data suggests that the acquisition of N501Y reflects an adaptation to warmer climates, a hypothesis that remains to be tested.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/química , COVID-19/patologia , COVID-19/virologia , Calorimetria , Humanos , Interferometria , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Estrutura Quaternária de Proteína , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/química , Temperatura , Termodinâmica
9.
bioRxiv ; 2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34268505

RESUMO

The seasonal nature in the outbreaks of respiratory viral infections with increased transmission during low temperatures has been well established. The current COVID-19 pandemic makes no exception, and temperature has been suggested to play a role on the viability and transmissibility of SARS-CoV-2. The receptor binding domain (RBD) of the Spike glycoprotein binds to the angiotensin-converting enzyme 2 (ACE2) to initiate viral fusion. Studying the effect of temperature on the receptor-Spike interaction, we observed a significant and stepwise increase in RBD-ACE2 affinity at low temperatures, resulting in slower dissociation kinetics. This translated into enhanced interaction of the full Spike to ACE2 receptor and higher viral attachment at low temperatures. Interestingly, the RBD N501Y mutation, present in emerging variants of concern (VOCs) that are fueling the pandemic worldwide, bypassed this requirement. This data suggests that the acquisition of N501Y reflects an adaptation to warmer climates, a hypothesis that remains to be tested.

10.
Cell Host Microbe ; 29(7): 1137-1150.e6, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34133950

RESUMO

While the standard regimen of the BNT162b2 mRNA vaccine for SARS-CoV-2 includes two doses administered 3 weeks apart, some public health authorities are spacing these doses, raising concerns about efficacy. However, data indicate that a single dose can be up to 90% effective starting 14 days post-administration. To assess the mechanisms contributing to protection, we analyzed humoral and T cell responses three weeks after a single BNT162b2 dose. We observed weak neutralizing activity elicited in SARS-CoV-2 naive individuals but strong anti-receptor binding domain and spike antibodies with Fc-mediated effector functions and cellular CD4+ T cell responses. In previously infected individuals, a single dose boosted all humoral and T cell responses, with strong correlations between T helper and antibody immunity. Our results highlight the potential role of Fc-mediated effector functions and T cell responses in vaccine efficacy. They also provide support for spacing doses to vaccinate more individuals in conditions of vaccine scarcity.


Assuntos
Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Linfócitos T/imunologia , Adulto , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/química , Vacina BNT162 , Betacoronavirus , COVID-19/prevenção & controle , Proteínas de Transporte , Feminino , Humanos , Imunidade , Fragmentos Fc das Imunoglobulinas , Masculino , Pessoa de Meia-Idade , Vacinação , Vacinas Sintéticas/imunologia , Adulto Jovem , Vacinas de mRNA
11.
Can J Public Health ; 112(4): 566-575, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34047966

RESUMO

OBJECTIVE: To characterize SARS-CoV-2 transmission following a COVID-19 outbreak in an emergency childcare centre (ECCC) in April 2020 in Quebec, Canada. METHODS: The study population consisted of all the children and employees who attended the ECCC as well as household contacts of the confirmed COVID-19 cases. Of the 120 individuals in the study, five cases were confirmed by epidemiological link and 25 were identified as COVID-19 by RT-PCR among which 19 were analyzed by viral whole genome sequencing. Descriptive epidemiology, social network visualization, and phylogenetic analysis were used to characterize viral transmission. RESULTS: Phylogenetic analysis identified two separate introductions of distinct lineages of SARS-CoV-2 and estimated an average effective reproductive number of Re = 1.9 (range 0.9-4.9) with a mean doubling time of 3.2 days (range 2.1-5.2). The first and most prevalent lineage was introduced by two asymptomatic children who were likely infected by their parent, a confirmed COVID-19 case working in a long-term care centre. Among infected household adults, attack rates were significantly higher in mothers than in fathers (risk ratio = 4.5; 95% CI 1.1-18.7). The extent of transmission makes it one of the largest documented outbreaks in a daycare in Canada. CONCLUSION: The analyses carried out showed the probable origin and direction of the transmission of the infection (adult-child, child-adult, and child-child), thus highlighting how asymptomatic children can efficiently transmit SARS-CoV-2.


RéSUMé: OBJECTIF: Caractériser la transmission du SRAS-CoV-2 à la suite d'une éclosion de COVID-19 dans un service de garde d'urgence en milieu scolaire (SGUMS) en avril 2020 au Québec, Canada. MéTHODES: La population à l'étude était composée de tous les enfants et employés ayant fréquenté le SGUMS ainsi que les contacts familiaux des cas confirmés de COVID-19. Sur les 120 personnes à l'étude, cinq cas ont été confirmés par lien épidémiologique et 25 par RT-PCR. Parmi ces derniers, 19 ont été analysés par séquençage viral du génome entier. La caractérisation de la transmission a été réalisée à l'aide d'analyses descriptives et phylogénétiques ainsi que de la visualisation de réseaux sociaux. RéSULTATS: L'analyse phylogénétique a identifié deux introductions de lignées distinctes du SRAS-CoV-2 et un taux de reproduction net Re = 1,9 (étendue 0,9­4,9) avec un temps moyen de doublement de 3,2 jours (étendue 2,1­5,2). La première lignée, et la plus répandue, a été introduite par deux enfants asymptomatiques qui ont probablement été infectés par leur parent, un travailleur de la santé atteint de COVID-19. Dans les noyaux familiaux, les taux d'attaque étaient significativement plus élevés chez les mères que chez les pères (rapport de risque = 4,5 ; IC à 95 % 1,1­18,7). L'ampleur de la transmission en fait de celle-ci la plus importante éclosion documentée dans un service de garde au Canada. CONCLUSION: Cette étude a permis de déterminer l'origine et la direction probables de la transmission de l'infection (adulte-enfant, enfant-adulte et enfant-enfant) et démontrer que les enfants asymptomatiques peuvent transmettre le SRAS-CoV-2.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , Creches , Surtos de Doenças , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Busca de Comunicante , Emergências , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , Quebeque/epidemiologia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Adulto Jovem
12.
bioRxiv ; 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33758857

RESUMO

The standard dosing of the Pfizer/BioNTech BNT162b2 mRNA vaccine validated in clinical trials includes two doses administered three weeks apart. While the decision by some public health authorities to space the doses because of limiting supply has raised concerns about vaccine efficacy, data indicate that a single dose is up to 90% effective starting 14 days after its administration. We analyzed humoral and T cells responses three weeks after a single dose of this mRNA vaccine. Despite the proven efficacy of the vaccine at this time point, no neutralizing activity were elicited in SARS-CoV-2 naïve individuals. However, we detected strong anti-receptor binding domain (RBD) and Spike antibodies with Fc-mediated effector functions and cellular responses dominated by the CD4 + T cell component. A single dose of this mRNA vaccine to individuals previously infected by SARS-CoV-2 boosted all humoral and T cell responses measured, with strong correlations between T helper and antibody immunity. Neutralizing responses were increased in both potency and breadth, with distinctive capacity to neutralize emerging variant strains. Our results highlight the importance of vaccinating uninfected and previously-infected individuals and shed new light into the potential role of Fc-mediated effector functions and T cell responses in vaccine efficacy. They also provide support to spacing the doses of two-vaccine regimens to vaccinate a larger pool of the population in the context of vaccine scarcity against SARS-CoV-2.

13.
Front Genet ; 12: 716541, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35401651

RESUMO

COVID-19 was declared to be a pandemic in March 2020 by the World Health Organization. Timely sharing of viral genomic sequencing data accompanied by a minimal set of contextual data is essential for informing regional, national, and international public health responses. Such contextual data is also necessary for developing, and improving clinical therapies and vaccines, and enhancing the scientific community's understanding of the SARS-CoV-2 virus. The Canadian COVID-19 Genomics Network (CanCOGeN) was launched in April 2020 to coordinate and upscale existing genomics-based COVID-19 research and surveillance efforts. CanCOGeN is performing large-scale sequencing of both the genomes of SARS-CoV-2 virus samples (VirusSeq) and affected Canadians (HostSeq). This paper addresses the privacy concerns associated with sharing the viral sequence data with a pre-defined set of contextual data describing the sample source and case attribute of the sequence data in the Canadian context. Currently, the viral genome sequences are shared by provincial public health laboratories and their healthcare and academic partners, with the Canadian National Microbiology Laboratory and with publicly accessible databases. However, data sharing delays and the provision of incomplete contextual data often occur because publicly releasing such data triggers privacy and data governance concerns. The CanCOGeN Ethics and Governance Expert Working Group thus has investigated several privacy issues cited by CanCOGeN data providers/stewards. This paper addresses these privacy concerns and offers insights primarily in the Canadian context, although similar privacy considerations also exist in other jurisdictions. We maintain that sharing viral sequencing data and its limited associated contextual data in the public domain generally does not pose insurmountable privacy challenges. However, privacy risks associated with reidentification should be actively monitored due to advancements in reidentification methods and the evolving pandemic landscape. We also argue that during a global health emergency such as COVID-19, privacy should not be used as a blanket measure to prevent such genomic data sharing due to the significant benefits it provides towards public health responses and ongoing research activities.

14.
J Antimicrob Chemother ; 75(4): 849-858, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31891387

RESUMO

OBJECTIVES: Azole resistance among Aspergillus fumigatus isolates is a growing concern worldwide. Induction of mutations during azole therapy, environment-acquired mutations caused by azole fungicides and intrinsic resistance of cryptic Fumigati species all contribute to the burden of resistance. However, there is a lack of data in Canada on this emerging threat. METHODS: To gain insights into the magnitude and mechanisms of resistance, a 14 year collection of Aspergillus section Fumigati comprising 999 isolates from 807 patients at a Montreal hospital was screened for azole resistance, and resistance mechanisms were investigated with the combined use of genome sequencing, 3D modelling and phenotypic efflux pump assays. RESULTS: Overall azole resistance was low (4/807 patients; 0.5%). A single azole-resistant A. fumigatus sensu stricto strain, isolated from a patient with pulmonary aspergillosis, displayed efflux-pump-mediated resistance. Three patients were colonized or infected with azole-resistant cryptic Fumigati species (one Aspergillus thermomutatus, one Aspergillus lentulus and one Aspergillus turcosus). Evidence is presented that azole resistance is efflux-pump-mediated in the A. turcosus isolate, but not in the A. lentulus and A. thermomutatus isolates. CONCLUSIONS: Azole resistance is rare in our geographic area and currently driven by cryptic Fumigati species. Continued surveillance of emergence of resistance is warranted.


Assuntos
Azóis , Farmacorresistência Fúngica , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Aspergillus/genética , Aspergillus fumigatus/genética , Azóis/farmacologia , Canadá , Proteínas Fúngicas/genética , Humanos , Testes de Sensibilidade Microbiana , Prevalência , Centros de Atenção Terciária
15.
Artigo em Inglês | MEDLINE | ID: mdl-30637395

RESUMO

Here, we present the draft genome sequence of Aspergillus thermomutatus (formerly known as Neosartorya pseudofischeri; strain HMR-AF-39/LSPQ-01276), a cryptic species of Aspergillus section Fumigati. This species is intrinsically resistant to antifungal azoles and is recognized as an agent of invasive aspergillosis among immunocompromised hosts.

16.
Artigo em Inglês | MEDLINE | ID: mdl-30637396

RESUMO

We present the draft genome sequences of two clinical strains of Aspergillus turcosus, one azole-susceptible (strain HMR-AF-23/LSPQ-01275) and the other azole-resistant (strain HMR-AF-1038/LSPQ-01280), isolated from bronchoalveolar lavage fluid of two adult patients. These two strains are the first reported clinical isolates of A. turcosus.

17.
BMC Genomics ; 20(1): 1037, 2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31888453

RESUMO

BACKGROUND: Whole-genome shotgun sequencing, which stitches together millions of short sequencing reads into a single genome, ushered in the era of modern genomics and led to a rapid expansion of the number of genome sequences available. Nevertheless, assembly of short reads remains difficult, resulting in fragmented genome sequences. Ultimately, only a sequencing technology capable of capturing complete chromosomes in a single run could resolve all ambiguities. Even "third generation" sequencing technologies produce reads far shorter than most eukaryotic chromosomes. However, the ciliate Oxytricha trifallax has a somatic genome with thousands of chromosomes averaging only 3.2 kbp, making it an ideal candidate for exploring the benefits of sequencing whole chromosomes without assembly. RESULTS: We used single-molecule real-time sequencing to capture thousands of complete chromosomes in single reads and to update the published Oxytricha trifallax JRB310 genome assembly. In this version, over 50% of the completed chromosomes with two telomeres derive from single reads. The improved assembly includes over 12,000 new chromosome isoforms, and demonstrates that somatic chromosomes derive from variable rearrangements between somatic segments encoded up to 191,000 base pairs away. However, while long reads reduce the need for assembly, a hybrid approach that supplements long-read sequencing with short reads for error correction produced the most complete and accurate assembly, overall. CONCLUSIONS: This assembly provides the first example of complete eukaryotic chromosomes captured by single sequencing reads and demonstrates that traditional approaches to genome assembly can mask considerable structural variation.


Assuntos
Cromossomos , Cilióforos/genética , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Biologia Computacional/métodos , Genoma , Genômica/métodos , Hibridização Genética
18.
Environ Microbiol ; 20(3): 1030-1040, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29318727

RESUMO

Diplonema papillatum is the type species of diplonemids, which are among the most abundant and diverse heterotrophic microeukaryotes in the world's oceans. Diplonemids are also known for a unique form of post-transcriptional processing in mitochondria. However, the lack of reverse genetics methodologies in these protists has hampered elucidation of their cellular and molecular biology. Here we report a protocol for D. papillatum transformation. We have identified several antibiotics to which D. papillatum is sensitive and thus are suitable selectable markers, and focus in particular on puromycin. Constructs were designed encoding antibiotic resistance markers, fluorescent tags, and additional genomic sequences from D. papillatum to facilitate vector integration into chromosomes. We established conditions for effective electroporation, and demonstrate that electroporated constructs can be stably integrated in the D. papillatum nuclear genome. In D. papillatum transformants, the heterologous puromycin resistance gene is transcribed into mRNA and translated into protein, as determined by Southern hybridization, reverse transcription, and Western blot analyses. This is the first documented case of transformation in a euglenozoan protist outside the well-studied kinetoplastids, making D. papillatum a genetically tractable organism and potentially a model system for marine microeukaryotes.


Assuntos
Euglenozoários/fisiologia , Transformação Genética , Organismos Aquáticos , Resistência a Medicamentos , Euglenozoários/genética , Eucariotos/genética , Regulação da Expressão Gênica , Mitocôndrias , Filogenia , Puromicina/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
19.
RNA ; 24(1): 18-29, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29079634

RESUMO

Dicer-dependent small noncoding RNAs play important roles in gene regulation in a wide variety of organisms. Endogenous small interfering RNAs (siRNAs) are part of an ancient pathway of transposon control in plants and animals. The ciliate, Oxytricha trifallax, has approximately 16,000 gene-sized chromosomes in its somatic nucleus. Long noncoding RNAs establish high ploidy levels at the onset of sexual development, but the factors that regulate chromosome copy numbers during cell division and growth have been a mystery. We report a novel function of a class of Dicer (Dcl-1)- and RNA-dependent RNA polymerase (RdRP)-dependent endogenous small RNAs in regulating chromosome copy number and gene dosage in O. trifallax Asexually growing populations express an abundant class of 21-nt sRNAs that map to both coding and noncoding regions of most chromosomes. These sRNAs are bound to chromatin and their levels surprisingly do not correlate with mRNA levels. Instead, the levels of these small RNAs correlate with genomic DNA copy number. Reduced sRNA levels in dcl-1 or rdrp mutants lead to concomitant reduction in chromosome copy number. Furthermore, these cells show no signs of transposon activation, but instead display irregular nuclear architecture and signs of replication stress. In conclusion, Oxytricha Dcl-1 and RdRP-dependent small RNAs that derive from the somatic nucleus contribute to the maintenance of gene dosage, possibly via a role in DNA replication, offering a novel role for these small RNAs in eukaryotes.


Assuntos
DNA de Protozoário/genética , Oxytricha/genética , RNA de Protozoário/fisiologia , Pequeno RNA não Traduzido/fisiologia , Cromossomos/genética , Variações do Número de Cópias de DNA , Replicação do DNA , Epigênese Genética , Proteínas de Protozoários/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonuclease III/fisiologia
20.
Sci Rep ; 7(1): 14166, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29074957

RESUMO

Chromosome rearrangements are important drivers in genome and gene evolution, with implications ranging from speciation to development to disease. In the flagellate Diplonema papillatum (Euglenozoa), mitochondrial genome rearrangements have resulted in nearly hundred chromosomes and a systematic dispersal of gene fragments across the multipartite genome. Maturation into functional RNAs involves separate transcription of gene pieces, joining of precursor RNAs via trans-splicing, and RNA editing by substitution and uridine additions both reconstituting crucial coding sequence. How widespread these unusual features are across diplonemids is unclear. We have analyzed the mitochondrial genomes and transcriptomes of four species from the Diplonema/Rhynchopus clade, revealing a considerable genomic plasticity. Although gene breakpoints, and thus the total number of gene pieces (~80), are essentially conserved across this group, the number of distinct chromosomes varies by a factor of two, with certain chromosomes combining up to eight unrelated gene fragments. Several internal protein-coding gene pieces overlap substantially, resulting, for example, in a stretch of 22 identical amino acids in cytochrome c oxidase subunit 1 and NADH dehydrogenase subunit 5. Finally, the variation of post-transcriptional editing patterns across diplonemids indicates compensation of two adverse trends: rapid sequence evolution and loss of genetic information through unequal chromosome segregation.


Assuntos
Cromossomos/genética , Euglenozoários/genética , Genoma Mitocondrial , Edição de RNA , DNA Mitocondrial , Filogenia , Trans-Splicing
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA