Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Neurosci ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600167

RESUMO

In neurons, RNA granules are transported along the axon for local translation away from the soma. Recent studies indicate that some of this transport involves hitchhiking of RNA granules on lysosome-related vesicles. In the present study, we leveraged the ability to prevent transport of these vesicles into the axon by knockout of the lysosome-kinesin adaptor BLOC-one-related complex (BORC) to identify a subset of axonal mRNAs that depend on lysosome-related vesicles for transport. We found that BORC knockout causes depletion of a large group of axonal mRNAs mainly encoding ribosomal and mitochondrial/oxidative phosphorylation proteins. This depletion results in mitochondrial defects and eventually leads to axonal degeneration in human induced pluripotent stem cell (iPSC)-derived and mouse neurons. Pathway analyses of the depleted mRNAs revealed a mechanistic connection of BORC deficiency with common neurodegenerative disorders. These results demonstrate that mRNA transport on lysosome-related vesicles is critical for the maintenance of axonal homeostasis and that its failure causes axonal degeneration.

2.
Am J Cancer Res ; 14(2): 562-584, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455403

RESUMO

Previous studies reported that alternating electric fields (EFs) in the intermediate frequency (100-300 kHz) and low intensity (1-3 V/cm) regime - termed "Tumor Treating Fields" (TTFields) - have a specific, anti-proliferative effect on glioblastoma multiforme (GBM) cells. However, the mechanism(s) of action remain(s) incompletely understood, hindering the clinical adoption of treatments based on TTFields. To advance the study of such treatment in vitro, we developed an inductive device to deliver EFs to cell cultures which improves thermal and osmolar regulation compared to prior devices. Using this inductive device, we applied continuous, 200 kHz electromagnetic fields (EMFs) with a radial EF amplitude profile spanning 0-6.5 V/cm to cultures of primary rat astrocytes and several human GBM cell lines - U87, U118, GSC827, and GSC923 - for a duration of 72 hours. Cell density was assessed via segmented pixel densities from GFP expression (U87, U118) or from staining (astrocytes, GSC827, GSC923). Further RNA-Seq analyses were performed on GSC827 and GSC923 cells. Treated cultures of all cell lines exhibited little to no change in proliferation at lower EF amplitudes (0-3 V/cm). At higher amplitudes (> 4 V/cm), different effects were observed. Apparent cell densities increased (U87), decreased (GSC827, GSC923), or showed little change (U118, astrocytes). RNA-Seq analyses on treated and untreated GSC827 and GSC923 cells revealed differentially expressed gene sets of interest, such as those related to cell cycle control. Up- and down-regulation, however, was not consistent across cell lines nor EF amplitudes. Our results indicate no consistent, anti-proliferative effect of 200 kHz EMFs across GBM cell lines and thus contradict previous in vitro findings. Rather, effects varied across different cell lines and EF amplitude regimes, highlighting the need to assess the effect(s) of TTFields and similar treatments on a per cell line basis.

3.
bioRxiv ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38076880

RESUMO

Biophysical profiling of primary tumors has revealed that individual tumor cells fall along a highly heterogeneous continuum of mechanical phenotypes. One idea is that a subset of tumor cells is "softer" to facilitate detachment and escape from the primary site, a step required to initiate metastasis. However, it has also been postulated that cells must be able to deform and generate sufficient force to exit into distant sites. Here, we aimed to dissect the mechanical changes that occur during extravasation and organ colonization. Using multiplexed methods of intravital microscopy and optical tweezer based active microrheology, we obtained longitudinal images and mechanical profiles of cells during organ colonization in vivo. We determined that cells were softer, more liquid like upon exit of the vasculature but stiffened and became more solid like once in the new organ microenvironment. We also determined that a YAP mediated mechanogenotype influenced the global dissemination in our in vivo and in vitro models and that reducing mechanical heterogeneity could reduce extravasation. Moreover, our high throughput analysis of mechanical phenotypes of patient samples revealed that this mechanics was in part regulated by the external hydrodynamic forces that the cancer cells experienced within capillary mimetics. Our findings indicate that disseminated cancer cells can keep mutating with a continuum landscape of mechano-phenotypes, governed by the YAP-mediated mechanosensing of hydrodynamic flow.

4.
bioRxiv ; 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36789415

RESUMO

Previous studies reported that alternating electric fields (EFs) in the intermediate frequency (100 - 300 kHz) and low intensity (1 - 3 V/cm) regime - termed "Tumor Treating Fields" (TTFields) - have a specific, anti-proliferative effect on glioblastoma multiforme (GBM) cells. However, the mechanism(s) of action remain(s) incompletely understood, hindering the clinical adoption of treatments based on TTFields. To advance the study of such treatment in vitro , we developed an inductive device to deliver EFs to cell cultures which improves thermal and osmolar regulation compared to prior devices. Using this inductive device, we applied continuous, 200 kHz electromagnetic fields (EMFs) with a radial EF amplitude profile spanning 0 - 6.5 V/cm to cultures of primary rat astrocytes and several human GBM cell lines - U87, U118, GSC827, and GSC923 - for a duration of 72 hours. Cell density was assessed via segmented pixel densities from GFP expression (U87, U118) or from staining (astrocytes, GSC827, GSC923). Further RNA-Seq analyses were performed on GSC827 and GSC923 cells. Treated cultures of all cell lines exhibited little to no change in proliferation at lower EF amplitudes (0 - 3 V/cm). At higher amplitudes (> 4 V/cm), different effects were observed. Apparent cell densities increased (U87), decreased (GSC827, GSC923), or showed little change (U118, astrocytes). RNA-Seq analyses on treated and untreated GSC827 and GSC923 cells revealed differentially expressed gene sets of interest, such as those related to cell cycle control. Up- and down-regulation, however, was not consistent across cell lines nor EF amplitudes. Our results indicate no consistent, anti-proliferative effect of 200 kHz EMFs across GBM cell lines and thus contradict previous in vitro findings. Rather, effects varied across different cell lines and EF amplitude regimes, highlighting the need to assess the effect(s) of TTFields and similar treatments on a per cell line basis.

5.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36293452

RESUMO

Computational modeling can provide a mechanistic and quantitative framework for describing intracellular spatial heterogeneity of solutes such as oxygen partial pressure (pO2). This study develops and evaluates a finite-element model of oxygen-consuming mitochondrial bioenergetics using the COMSOL Multiphysics program. The model derives steady-state oxygen (O2) distributions from Fickian diffusion and Michaelis-Menten consumption kinetics in the mitochondria and cytoplasm. Intrinsic model parameters such as diffusivity and maximum consumption rate were estimated from previously published values for isolated and intact mitochondria. The model was compared with experimental data collected for the intracellular and mitochondrial pO2 levels in human cervical cancer cells (HeLa) in different respiratory states and under different levels of imposed pO2. Experimental pO2 gradients were measured using lifetime imaging of a Förster resonance energy transfer (FRET)-based O2 sensor, Myoglobin-mCherry, which offers in situ real-time and noninvasive measurements of subcellular pO2 in living cells. On the basis of these results, the model qualitatively predicted (1) the integrated experimental data from mitochondria under diverse experimental conditions, and (2) the impact of changes in one or more mitochondrial processes on overall bioenergetics.


Assuntos
Consumo de Oxigênio , Oxigênio , Humanos , Mioglobina/metabolismo , Simulação por Computador , Metabolismo Energético
6.
Biopolymers ; 113(3): e23481, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34812507

RESUMO

Routine patient testing for viral infections is critical to identify infected individuals for treatment and to prevent spreading of infections to others. Developing robust and reliable diagnostic tools to detect nucleic acids of viruses at the point-of-care could greatly assist the clinical management of viral infections. The remarkable stability and high binding affinity of peptide nucleic acids (PNAs) to target nucleic acids could make PNA-based biosensors an excellent starting point to develop new nucleic acid detection technologies. We report the application of cyclopentane-modified PNAs to capture target nucleic acids in a microfluidic channel, and the use of bioorthogonal PNAs conjugated to gold nanoparticles as probes to semi-quantitatively signal the presence of a target nucleic acid derived from HIV-1. The basic results presented could be used to develop more advanced devices to detect nucleic acids from viruses such as HIV, SARS-CoV-2, and a wide range of other human diseases.


Assuntos
COVID-19 , Nanopartículas Metálicas , Ácidos Nucleicos , Ácidos Nucleicos Peptídicos , COVID-19/diagnóstico , Ciclopentanos , Ouro , Humanos , Microfluídica , SARS-CoV-2/genética
7.
Langmuir ; 37(40): 11793-11803, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34597052

RESUMO

Hydrogel microspheres are sought for a variety of biomedical applications, including therapeutic and cellular delivery, sensors, and lubricants. Robust fabrication of hydrogel microspheres with uniform sizes and properties can be achieved using microfluidic systems that rely on droplet formation and subsequent gelation to form microspheres. Such systems work well when gelation is initiated after droplet formation but are not practical for timed gelation systems where gelation is initiated prior to droplet formation; premature gelation can lead to device blockage, variable microsphere diameter due to viscosity changes in the precursor solution, and limited numbers of microspheres produced in a single run. To enable microfluidic fabrication of microspheres from timed gelation hydrogel systems, an in situ mixing region is needed so that various hydrogel precursor components can be added separately. Here, we designed and evaluated three mixing devices for their effectiveness at mixing hydrogel precursor solutions prior to droplet formation and subsequent gelation. The serpentine geometry was found to be the most effective and was further improved with the inclusion of a pillar array to increase agitation. The optimized device was shown to fully mix precursor solutions and enable the fabrication of monodisperse polyethylene glycol microspheres, offering great potential for use with timed gelation hydrogel systems.


Assuntos
Hidrogéis , Microfluídica , Dispositivos Lab-On-A-Chip , Microesferas , Polietilenoglicóis
8.
Methods Mol Biol ; 2304: 93-109, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34028712

RESUMO

Microfabricated devices have found applications in a range of biomedical research problems in recent years, with thousands of research papers published and multiple commercial devices now available. This chapter is intended to provide an overview of the available options for devices compatible with confocal microscopy, including an overview of fabrication techniques and some examples of device use. Although there are times when off-the-shelf devices are well suited for the problem at hand, in some cases customized devices are necessary or more convenient. Protocols for researchers who wish to make their own devices are outlined below; although fabricating templates for devices requires some specialized equipment, making PDMS or hydrogel devices from templates can be done in a standard laboratory setting.


Assuntos
Microscopia Confocal/instrumentação , Desenho de Equipamento , Humanos , Teste de Materiais , Técnicas Analíticas Microfluídicas/instrumentação , Microtecnologia
9.
Micromachines (Basel) ; 12(3)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806282

RESUMO

We hypothesized that the creation of a 3-dimensional ovarian follicle, with embedded granulosa and theca cells, would better mimic the environment necessary to support early oocytes, both structurally and hormonally. Using a microfluidic system with controlled flow rates, 3-dimensional two-layer (core and shell) capsules were created. The core consists of murine granulosa cells in 0.8 mg/mL collagen + 0.05% alginate, while the shell is composed of murine theca cells suspended in 2% alginate. Somatic cell viability tests and hormonal assessments (estradiol, progesterone, and androstenedione) were performed on days 1, 6, 13, 20, and 27. Confocal microscopy confirmed appropriate compartmentalization of fluorescently-labeled murine granulosa cells to the inner capsule and theca cells to the outer shell. Greater than 78% of cells present in capsules were alive up to 27 days after collection. Artificially constructed ovarian follicles exhibited intact endocrine function as evidenced by the production of estradiol, progesterone, and androstenedione. Oocytes from primary and early secondary follicles were successfully encapsulated, which maintained size and cellular compartmentalization. This novel microfluidic system successfully encapsulated oocytes from primary and secondary follicles, recapitulating the two-compartment system necessary for the development of the mammalian oocyte. Importantly, this microfluidic system can be easily adapted for sterile, high throughput applications.

10.
Lab Chip ; 21(8): 1549-1562, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33629685

RESUMO

We demonstrate diffraction-limited and super-resolution imaging through thick layers (tens-hundreds of microns) of BIO-133, a biocompatible, UV-curable, commercially available polymer with a refractive index (RI) matched to water. We show that cells can be directly grown on BIO-133 substrates without the need for surface passivation and use this capability to perform extended time-lapse volumetric imaging of cellular dynamics 1) at isotropic resolution using dual-view light-sheet microscopy, and 2) at super-resolution using instant structured illumination microscopy. BIO-133 also enables immobilization of 1) Drosophila tissue, allowing us to track membrane puncta in pioneer neurons, and 2) Caenorhabditis elegans, which allows us to image and inspect fine neural structure and to track pan-neuronal calcium activity over hundreds of volumes. Finally, BIO-133 is compatible with other microfluidic materials, enabling optical and chemical perturbation of immobilized samples, as we demonstrate by performing drug and optogenetic stimulation on cells and C. elegans.


Assuntos
Caenorhabditis elegans , Água , Animais , Microscopia de Fluorescência , Polímeros , Refratometria
12.
Ann Rheum Dis ; 80(2): 209-218, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32988843

RESUMO

OBJECTIVES: Low-density granulocytes (LDGs) are a distinct subset of proinflammatory and vasculopathic neutrophils expanded in systemic lupus erythematosus (SLE). Neutrophil trafficking and immune function are intimately linked to cellular biophysical properties. This study used proteomic, biomechanical and functional analyses to further define neutrophil heterogeneity in the context of SLE. METHODS: Proteomic/phosphoproteomic analyses were performed in healthy control (HC) normal density neutrophils (NDNs), SLE NDNs and autologous SLE LDGs. The biophysical properties of these neutrophil subsets were analysed by real-time deformability cytometry and lattice light-sheet microscopy. A two-dimensional endothelial flow system and a three-dimensional microfluidic microvasculature mimetic (MMM) were used to decouple the contributions of cell surface mediators and biophysical properties to neutrophil trafficking, respectively. RESULTS: Proteomic and phosphoproteomic differences were detected between HC and SLE neutrophils and between SLE NDNs and LDGs. Increased abundance of type 1 interferon-regulated proteins and differential phosphorylation of proteins associated with cytoskeletal organisation were identified in SLE LDGs relative to SLE NDNs. The cell surface of SLE LDGs was rougher than in SLE and HC NDNs, suggesting membrane perturbances. While SLE LDGs did not display increased binding to endothelial cells in the two-dimensional assay, they were increasingly retained/trapped in the narrow channels of the lung MMM. CONCLUSIONS: Modulation of the neutrophil proteome and distinct changes in biophysical properties are observed alongside differences in neutrophil trafficking. SLE LDGs may be increasingly retained in microvasculature networks, which has important pathogenic implications in the context of lupus organ damage and small vessel vasculopathy.


Assuntos
Granulócitos/patologia , Lúpus Eritematoso Sistêmico/imunologia , Proteínas de Membrana/análise , Neutrófilos/patologia , Proteoma/análise , Estudos de Casos e Controles , Heterogeneidade Genética , Granulócitos/fisiologia , Humanos , Interferon Tipo I/metabolismo , Lúpus Eritematoso Sistêmico/sangue , Microvasos/metabolismo , Neutrófilos/fisiologia , Fosforilação , Proteômica
13.
Biophys J ; 117(7): 1167-1178, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31495447

RESUMO

Toward the goal of understanding the pathophysiology of mild blast-induced traumatic brain injury and identifying the physical forces associated with the primary injury phase, we developed a system that couples a pneumatic blast to a microfluidic channel to precisely and reproducibly deliver shear transients to dissociated human central nervous system (CNS) cells, on a timescale comparable to an explosive blast but with minimal pressure transients. Using fluorescent beads, we have characterized the shear transients experienced by the cells and demonstrate that the system is capable of accurately and reproducibly delivering uniform shear transients with minimal pressure across the cell culture volume. This system is compatible with high-resolution, time-lapse optical microscopy. Using this system, we demonstrate that blast-like shear transients produced with minimal pressure transients and submillisecond rise times activate calcium responses in dissociated human CNS cultures. Cells respond with increased cytosolic free calcium to a threshold shear stress between 8 and 21 Pa; the propagation of this calcium response is a result of purinergic signaling. We propose that this system models, in vitro, the fundamental injury wave produced by shear forces consequent to blast shock waves passing through density inhomogeneity in human CNS cells.


Assuntos
Traumatismos por Explosões , Lesões Encefálicas , Dispositivos Lab-On-A-Chip , Resistência ao Cisalhamento , Estresse Mecânico , Explosões , Humanos , Pressão
14.
Cell Syst ; 9(2): 187-206.e16, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31445892

RESUMO

Tumor cells encounter a myriad of physical cues upon arrest and extravasation in capillary beds. Here, we examined the role of physical factors in non-random organ colonization using a zebrafish xenograft model. We observed a two-step process by which mammalian mammary tumor cells showed non-random organ colonization. Initial homing was driven by vessel architecture, where greater numbers of cells became arrested in the topographically disordered blood vessels of the caudal vascular plexus (CVP) than in the linear vessels in the brain. Following arrest, bone-marrow- and brain-tropic clones exhibited organ-specific patterns of extravasation. Extravasation was mediated by ß1 integrin, where knockdown of ß1 integrin reduced extravasation in the CVP but did not affect extravasation of a brain-tropic clone in the brain. In contrast, silencing myosin 1B redirected early colonization from the brain to the CVP. Our results suggest that organ selectivity is driven by both vessel topography and cell-type-dependent extravasation.


Assuntos
Carcinogênese/metabolismo , Movimento Celular/fisiologia , Especificidade de Órgãos/fisiologia , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/fisiopatologia , Linhagem Celular Tumoral , Integrina beta1/metabolismo , Miosina Tipo I/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Peixe-Zebra/embriologia
15.
J Cell Physiol ; 234(11): 20608-20622, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31012116

RESUMO

Commonly used monolayer cancer cell cultures fail to provide a physiologically relevant environment in terms of oxygen delivery. Here, we describe a three-dimensional (3D) bioreactor system where cancer cells are grown in Matrigel in modified six-well plates. Oxygen is delivered to the cultures through a polydimethylsiloxane (PDMS) membrane at the bottom of the wells, with microfabricated PDMS pillars to control oxygen delivery. The plates receive 3% oxygen from below and 0% oxygen at the top surface of the media, providing a gradient of 3-0% oxygen. We compared growth and transcriptional profiles for cancer cells grown in Matrigel in the bioreactor, 3D cultures grown in 21% oxygen, and cells grown in a standard hypoxia chamber at 3% oxygen. Additionally, we compared gene expression of conventional two-dimensional monolayer culture and 3D Matrigel culture in 21% oxygen. We conclude that controlled oxygen delivery may provide a more physiologically relevant 3D system.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Meios de Cultura , Oxigênio , Linhagem Celular Tumoral , Colágeno , Combinação de Medicamentos , Regulação Neoplásica da Expressão Gênica , Humanos , Laminina , Células MCF-7 , Proteoglicanas
16.
PLoS One ; 13(7): e0201529, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30059530

RESUMO

Analytical ultracentrifugation (AUC) is a first-principles based method for studying macromolecules and particles in solution by monitoring the evolution of their radial concentration distribution as a function of time in the presence of a high centrifugal field. In sedimentation velocity experiments, hydrodynamic properties relating to size, shape, density, and solvation of particles can be measured, at a high hydrodynamic resolution, on polydisperse samples. In a recent multilaboratory benchmark study including data from commercial analytical ultracentrifuges in 67 laboratories, the calibration accuracy of the radial dimension was found to be one of the dominant factors limiting the accuracy of AUC. In the present work, we develop an artifact consisting of an accurately calibrated reflective pattern lithographically deposited onto an AUC window. It serves as a reticle when scanned in AUC control experiments for absolute calibration of radial magnification. After analysis of the pitch between landmarks in scans using different optical systems, we estimate that the residual uncertainty in radial magnification after external calibration with the radial scale artifact is ≈0.2 %, of similar magnitude to other important contributions after external calibration such as the uncertainty in temperature and time. The previous multilaboratory study had found many instruments with errors in radial measurements of 1 % to 2 %, and a few instruments with errors in excess of 15 %, meaning that the use of the artifact developed here could reduce errors by 5-to 10-fold or more. Adoption of external radial calibration is thus an important factor for assuring accuracy in studies related to molecular hydrodynamics and particle size measurements by AUC.


Assuntos
Métodos Analíticos de Preparação de Amostras/instrumentação , Métodos Analíticos de Preparação de Amostras/métodos , Métodos Analíticos de Preparação de Amostras/normas , Sedimentação Sanguínea , Calibragem , Fracionamento por Campo e Fluxo/instrumentação , Fracionamento por Campo e Fluxo/métodos , Humanos , Ultracentrifugação/instrumentação , Ultracentrifugação/métodos , Ultracentrifugação/normas
17.
Stem Cell Reports ; 10(1): 300-313, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29233554

RESUMO

Pluripotent stem cells can be differentiated into 3D retinal organoids, with major cell types self-patterning into a polarized, laminated architecture. In static cultures, organoid development may be hindered by limitations in diffusion of oxygen and nutrients. Herein, we report a bioprocess using rotating-wall vessel (RWV) bioreactors to culture retinal organoids derived from mouse pluripotent stem cells. Organoids in RWV demonstrate enhanced proliferation, with well-defined morphology and improved differentiation of neurons including ganglion cells and S-cone photoreceptors. Furthermore, RWV organoids at day 25 (D25) reveal similar maturation and transcriptome profile as those at D32 in static culture, closely recapitulating spatiotemporal development of postnatal day 6 mouse retina in vivo. Interestingly, however, retinal organoids do not differentiate further under any in vitro condition tested here, suggesting additional requirements for functional maturation. Our studies demonstrate that bioreactors can accelerate and improve organoid growth and differentiation for modeling retinal disease and evaluation of therapies.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Organoides/metabolismo , Células-Tronco Pluripotentes/metabolismo , Retina/metabolismo , Animais , Camundongos , Camundongos Transgênicos , Organoides/citologia , Células-Tronco Pluripotentes/citologia , Retina/citologia
18.
Immunity ; 47(5): 862-874.e3, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29166587

RESUMO

Chemoattractant-mediated recruitment of hematopoietic cells to sites of pathogen growth or tissue damage is critical to host defense and organ homeostasis. Chemotaxis is typically considered to rely on spatial sensing, with cells following concentration gradients as long as these are present. Utilizing a microfluidic approach, we found that stable gradients of intermediate chemokines (CCL19 and CXCL12) failed to promote persistent directional migration of dendritic cells or neutrophils. Instead, rising chemokine concentrations were needed, implying that temporal sensing mechanisms controlled prolonged responses to these ligands. This behavior was found to depend on G-coupled receptor kinase-mediated negative regulation of receptor signaling and contrasted with responses to an end agonist chemoattractant (C5a), for which a stable gradient led to persistent migration. These findings identify temporal sensing as a key requirement for long-range myeloid cell migration to intermediate chemokines and provide insights into the mechanisms controlling immune cell motility in complex tissue environments.


Assuntos
Movimento Celular , Fatores Quimiotáticos/fisiologia , Células Mieloides/fisiologia , Animais , Quimiocina CCL19/fisiologia , Quimiocina CXCL12/fisiologia , Células Dendríticas/fisiologia , Quinase 3 de Receptor Acoplado a Proteína G/fisiologia , Quinases de Receptores Acoplados a Proteína G/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microfluídica
19.
Nat Med ; 20(12): 1458-63, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25384086

RESUMO

Antibodies are critical for defense against a variety of microbes, but they may also be pathogenic in some autoimmune diseases. Many effector functions of antibodies are mediated by Fcγ receptors (FcγRs), which are found on most immune cells, including dendritic cells (DCs)-important antigen-presenting cells that play a central role in inducing antigen-specific tolerance or immunity. Following antigen acquisition in peripheral tissues, DCs migrate to draining lymph nodes via the lymphatics to present antigen to T cells. Here we demonstrate that FcγR engagement by IgG immune complexes (ICs) stimulates DC migration from peripheral tissues to the paracortex of draining lymph nodes. In vitro, IC-stimulated mouse and human DCs showed greater directional migration in a chemokine (C-C) ligand 19 (CCL19) gradient and increased chemokine (C-C) receptor 7 (CCR7) expression. Using intravital two-photon microscopy, we observed that local administration of IC resulted in dermal DC mobilization. We confirmed that dermal DC migration to lymph nodes depended on CCR7 and increased in the absence of the inhibitory receptor FcγRIIB. These observations have relevance to autoimmunity because autoantibody-containing serum from humans with systemic lupus erythematosus (SLE) and from a mouse model of SLE also increased dermal DC migration in vivo, suggesting that this process may occur in lupus, potentially driving the inappropriate localization of autoantigen-bearing DCs.


Assuntos
Complexo Antígeno-Anticorpo/imunologia , Movimento Celular/imunologia , Células de Langerhans/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Linfonodos/imunologia , Receptores CCR7/imunologia , Receptores de IgG/imunologia , Animais , Quimiocina CCL19/imunologia , Células Dendríticas/imunologia , Humanos , Camundongos
20.
Proc Natl Acad Sci U S A ; 110(48): 19268-72, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24218599

RESUMO

X-ray phase contrast imaging offers a way to visualize the internal structures of an object without the need to deposit significant radiation, and thereby alleviate the main concern in X-ray diagnostic imaging procedures today. Grating-based differential phase contrast imaging techniques are compatible with compact X-ray sources, which is a key requirement for the majority of clinical X-ray modalities. However, these methods are substantially limited by the need for mechanical phase stepping. We describe an electromagnetic phase-stepping method that eliminates mechanical motion, thus removing the constraints in speed, accuracy, and flexibility. The method is broadly applicable to both projection and tomography imaging modes. The transition from mechanical to electromagnetic scanning should greatly facilitate the translation of X-ray phase contrast techniques into mainstream applications.


Assuntos
Fenômenos Eletromagnéticos , Microscopia de Contraste de Fase/métodos , Radiografia/métodos , Modelos Teóricos , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA