Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genome Biol Evol ; 16(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38776329

RESUMO

We have sequenced, assembled, and analyzed the nuclear and mitochondrial genomes and transcriptomes of Potamopyrgus estuarinus and Potamopyrgus kaitunuparaoa, two prosobranch snail species native to New Zealand that together span the continuum from estuary to freshwater. These two species are the closest known relatives of the freshwater species Potamopyrgus antipodarum-a model for studying the evolution of sex, host-parasite coevolution, and biological invasiveness-and thus provide key evolutionary context for understanding its unusual biology. The P. estuarinus and P. kaitunuparaoa genomes are very similar in size and overall gene content. Comparative analyses of genome content indicate that these two species harbor a near-identical set of genes involved in meiosis and sperm functions, including seven genes with meiosis-specific functions. These results are consistent with obligate sexual reproduction in these two species and provide a framework for future analyses of P. antipodarum-a species comprising both obligately sexual and obligately asexual lineages, each separately derived from a sexual ancestor. Genome-wide multigene phylogenetic analyses indicate that P. kaitunuparaoa is likely the closest relative to P. antipodarum. We nevertheless show that there has been considerable introgression between P. estuarinus and P. kaitunuparaoa. That introgression does not extend to the mitochondrial genome, which appears to serve as a barrier to hybridization between P. estuarinus and P. kaitunuparaoa. Nuclear-encoded genes whose products function in joint mitochondrial-nuclear enzyme complexes exhibit similar patterns of nonintrogression, indicating that incompatibilities between the mitochondrial and the nuclear genome may have prevented more extensive gene flow between these two species.


Assuntos
Filogenia , Caramujos , Animais , Caramujos/genética , Nova Zelândia , Introgressão Genética , Evolução Molecular , Genoma Mitocondrial , Genoma
2.
Insects ; 15(4)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38667378

RESUMO

(1) Background: Originally described as a single taxon, Peripatoides novaezealandiae (Hutton, 1876) are distributed across both main islands of New Zealand; the existence of multiple distinct lineages of live-bearing Onychophora across this spatial range has gradually emerged. Morphological conservatism obscured the true endemic diversity, and the inclusion of molecular tools has been instrumental in revealing these cryptic taxa. (2) Methods: Here, we review the diversity of the ovoviviparous Onychophora of New Zealand through a re-analysis of allozyme genotype data, mitochondrial DNA cytochrome oxidase subunit I sequences, geographic information and morphology. (3) Results: New analysis of the multilocus biallelic nuclear data using methods that do not require a priori assumptions of population assignment support at least six lineages of ovoviviparous Peripatoides in northern New Zealand, and mtDNA sequence variation is consistent with these divisions. Expansion of mitochondrial DNA sequence data, including representation of all existing taxa and additional populations extends our knowledge of the scale of sympatry among taxa and shows that three other lineages from southern South Island can be added to the Peripatoides list, and names are proposed here. In total, 10 species of Peripatoides can be recognised with current data.

3.
R Soc Open Sci ; 11(2): 231118, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356874

RESUMO

The biota of continents and islands are commonly considered to have a source-sink relationship, but small islands can harbour distinctive taxa. The distribution of four monotypic genera of Orthoptera on young subantarctic islands indicates a role for long-distance dispersal and extinction. Phylogenetic relationships were inferred from whole mtDNA genomes and nuclear sequences (45S cassette; four histones). We used a fossil and one palaeogeographic event to calibrate molecular clock analysis. We confirm that neither the Australian nor Aotearoa-New Zealand Rhaphidophoridae faunas are monophyletic. The radiation of Macropathinae may have begun in the late Jurassic, but trans-oceanic dispersal is required to explain the current distribution of some lineages within this subfamily. Dating the most recent common ancestor of seven island endemic species with their nearest mainland relative suggests that each existed long before their island home was available. Time estimates from our fossil-calibrated molecular clock analysis suggest several lineages have not been detected on mainland New Zealand, Australia, or elsewhere most probably due to their extinction, providing evidence that patterns of extinction, which are not consistently linked to range size or lineage age, confound biogeographic signal.

4.
Biol Invasions ; 25(6): 1723-1738, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36777104

RESUMO

Clear delimitation of management units is essential for effective management of invasive species. Analysis of population genetic structure of target species can improve identification and interpretation of natural and artificial barriers to dispersal. In Aotearoa New Zealand where the introduced ship rat (Rattus rattus) is a major threat to native biodiversity, effective suppression of pest numbers requires removal and limitation of reinvasion from outside the managed population. We contrasted population genetic structure in rat populations over a wide scale without known barriers, with structure over a fine scale with potential barriers to dispersal. MtDNA D-loop sequences and microsatellite genotypes resolved little genetic structure in southern North Island population samples of ship rat 100 km apart. In contrast, samples from major islands differed significantly for both mtDNA and nuclear markers. We also compared ship rats collected within a small peninsula reserve bounded by sea, suburbs and, more recently, a predator fence with rats in the surrounding forest. Here, mtDNA did not differ but genotypes from 14 nuclear loci were sufficient to distinguish the fenced population. This suggests that natural (sea) and artificial barriers (town, fence) are effectively limiting gene flow among ship rat populations over the short distance (~ 500 m) between the peninsula reserve and surrounding forest. The effectiveness of the fence alone is not clear given it is a recent feature and no historical samples exist; resampling population genetic diversity over time will improve understanding. Nonetheless, the current genetic isolation of the fenced rat population suggests that rat eradication is a sensible management option given that reinvasion appears to be limited and could probably be managed with a biosecurity programme. Supplementary Information: The online version contains supplementary material available at 10.1007/s10530-023-03004-8.

5.
Insects ; 14(1)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36662017

RESUMO

Insects that are freeze-tolerant start freezing at high sub-zero temperatures and produce small ice crystals. They do this using ice-nucleating agents that facilitate intercellular ice growth and prevent formation of large crystals where they can damage tissues. In Aotearoa/New Zealand the majority of cold adapted invertebrates studied survive freezing at any time of year, with ice formation beginning in the rich microbiome of the gut. Some freeze-tolerant insects are known to host symbiotic bacteria and/or fungi that produce ice-nucleating agents and we speculate that gut microbes of many New Zealand insects may provide ice-nucleating active compounds that moderate freezing. We consider too the possibility that evolutionary disparate freeze-tolerant insect species share gut microbes that are a source of ice-nucleating agents and so we describe potential transmission pathways of shared gut fauna. Despite more than 30 years of research into the freeze-tolerant mechanisms of Southern Hemisphere insects, the role of exogenous ice-nucleating agents has been neglected. Key traits of three New Zealand freeze-tolerant lineages are considered in light of the supercooling point (temperature of ice crystal formation) of microbial ice-nucleating particles, the initiation site of freezing, and the implications for invertebrate parasites. We outline approaches that could be used to investigate potential sources of ice-nucleating agents in freeze-tolerant insects and the tools employed to study insect microbiomes.

6.
Zootaxa ; 5383(2): 225-241, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38221250

RESUMO

Aotearoa New Zealand has a fauna of endemic alpine grasshoppers, consisting of thirteen species distributed among four genera. The many re-classifications of species within this group and the presence of species complexes highlight the uncertainty that surrounds relationships within and between these genera. High-throughput Next Generation Sequencing was used to assemble the complete mitochondrial genomes, 45S ribosomal cassettes and histone sequences of New Zealands four endemic alpine genera: Alpinacris, Brachaspis, Paprides and Sigaus. Phylogenetic analysis of these molecular datasets, as individual genes, partitions and combinations returned a consistent topology that is incompatible with the current classification. The genera Sigaus, Alpinacris, and Paprides all exhibit paraphyly. A consideration of the pronotum, epiphallus and terminalia of adult specimens reveals species-specific differences, but fails to provide compelling evidence for species groups justifying distinct genera. In combination with phylogenetic, morphological and spatial evidence we propose a simplified taxonomy consisting of a single genus for the mwhitiwhiti Aotearoa species radiation.


Assuntos
Genoma Mitocondrial , Gafanhotos , Ortópteros , Animais , Gafanhotos/genética , Ortópteros/genética , Filogenia , Nova Zelândia
7.
Ecol Evol ; 12(12): e9633, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36540081

RESUMO

Major aridification events in Australia during the Pliocene may have had significant impact on the distribution and structure of widespread species. To explore the potential impact of Pliocene and Pleistocene climate oscillations, we estimated the timing of population fragmentation and past connectivity of the currently isolated but morphologically similar subspecies of the widespread brushtail possum (Trichosurus vulpecula). We use ecological niche modeling (ENM) with the current fragmented distribution of brushtail possums to estimate the environmental envelope of this marsupial. We projected the ENM on models of past climatic conditions in Australia to infer the potential distribution of brushtail possums over 6 million years. D-loop haplotypes were used to describe population structure. From shotgun sequencing, we assembled whole mitochondrial DNA genomes and estimated the timing of intraspecific divergence. Our projections of ENMs suggest current possum populations were unlikely to have been in contact during the Pleistocene. Although lowered sea level during glacial periods enabled connection with habitat in Tasmania, climate fluctuation during this time would not have facilitated gene flow over much of Australia. The most recent common ancestor of sampled intraspecific diversity dates to the early Pliocene when continental aridification caused significant changes to Australian ecology and Trichosurus vulpecula distribution was likely fragmented. Phylogenetic analysis revealed that the subspecies T. v. hypoleucus (koomal; southwest), T. v. arnhemensis (langkurr; north), and T. v. vulpecula (bilda; southeast) correspond to distinct mitochondrial lineages. Despite little phenotypic differentiation, Trichosurus vulpecula populations probably experienced little gene flow with one another since the Pliocene, supporting the recognition of several subspecies and explaining their adaptations to the regional plant assemblages on which they feed.

8.
Insects ; 13(7)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35886743

RESUMO

The mayfly Acanthophlebia cruentata of Aotearoa, New Zealand, is widespread in Te Ika-a-Maui North Island streams, but has never been collected from South Island despite land connection during the last glacial maximum. Population structure of this mayfly might reflect re-colonisation after volcanic eruptions in North Island c1800 years ago, climate cycling or conceal older, cryptic diversity. We collected population samples from 33 locations to estimate levels of population genetic diversity and to document phenotypic variation. Relatively low intraspecific haplotype divergence was recorded among mitochondrial cytb sequences from 492 individuals, but these resolved three geographic-haplotype regions (north, west, east). We detected a signature of isolation by distance at low latitudes (north) but evidence of recent population growth in the west and east. We did not detect an effect of volcanic eruptions but infer range expansion into higher latitudes from a common ancestor during the last glacial period. As judged from wing length, both sexes of adult mayflies were larger at higher elevation and we found that haplotype region was also a significant predictor of Acanthophlebia cruentata size. This suggests that our mitochondrial marker is concordant with nuclear genetic differences that might be explained by founder effect during range expansion.

9.
R Soc Open Sci ; 9(3): 211596, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35316945

RESUMO

Mountains create steep environmental gradients that are sensitive barometers of climate change. We calibrated 10 statistical models to formulate ensemble ecological niche models for 12 predominantly alpine, flightless grasshopper species in Aotearoa New Zealand, using their current distributions and current conditions. Niche models were then projected for two future global climate scenarios: representative concentration pathway (RCP) 2.6 (1.0°C rise) and RCP8.5 (3.7°C rise). Results were species specific, with two-thirds of our models suggesting a reduction in potential range for nine species by 2070, but surprisingly, for six species, we predict an increase in potential suitable habitat under mild (+1.0°C) or severe global warming (+3.7°C). However, when the limited dispersal ability of these flightless grasshoppers is taken into account, all 12 species studied are predicted to suffer extreme reductions in range, with a quarter likely to go extinct due to a 96-100% reduction in suitable habitat. Habitat loss is associated with habitat fragmentation that is likely to escalate stochastic vulnerability of remaining populations. Here, we present the predicted outcomes for an endemic radiation of alpine taxa as an exemplar of the challenges that alpine species, both in New Zealand and internationally, are subject to by anthropogenic climate change.

10.
J Chem Ecol ; 48(2): 121-140, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35001201

RESUMO

Chemoreception plays a crucial role in the reproduction and survival of insects, which often rely on their sense of smell and taste to find partners, suitable habitats, and food sources, and to avoid predators and noxious substances. There is a substantial body of work investigating the chemoreception and chemical ecology of Diptera (flies) and Lepidoptera (moths and butterflies); but less is known about the Orthoptera (grasshoppers, locusts, crickets, and weta). Within the Orthoptera, the family Acrididae contains about 6700 species of short-horned grasshoppers. Grasshoppers are fascinating organisms to study due to their significant taxonomic and ecological divergence, however, most chemoreception and chemical ecology studies have focused on locusts because they are agricultural pests (e.g., Schistocerca gregaria and Locusta migratoria). Here we review studies of chemosensory systems and chemical ecology of all short-horned grasshoppers. Applications of genome editing tools and entomopathogenic microorganism to control locusts in association with their chemical ecology are also discussed. Finally, we identify gaps in the current knowledge and suggest topics of interest for future studies.


Assuntos
Borboletas , Gafanhotos , Animais , Ecossistema , Olfato
11.
J Evol Biol ; 35(4): 509-519, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34091960

RESUMO

Hybridization is an evolutionary process with wide-ranging potential outcomes, from providing populations with important genetic variation for adaptation to being a substantial fitness cost leading to extinction. Here, we focussed on putative hybridization between two morphologically distinct species of New Zealand grasshopper. We collected Phaulacridium marginale and Phaulacridium otagoense specimens from a region where mitochondrial introgression had been detected and where their habitat has been modified by introduced mammals eating the natural vegetation and by the colonization of many non-native plant species. In contrast to observations in the 1970s, our sampling of wild pairs of grasshoppers in copula provided no evidence of assortative mating with respect to species. Geometric morphometrics on pronotum shape of individuals from areas of sympatry detected phenotypically intermediate specimens (putative hybrids), and the distribution of phenotypes in most areas of sympatry was found to be unimodal. These results suggest that hybridization associated with anthropogenic habitat changes has led to these closely related species forming a hybrid swarm, with random mating. Without evidence of hybrid disadvantage, we suggest a novel hybrid lineage might eventually result from the merging of these two species.


Assuntos
Gafanhotos , Animais , Gafanhotos/genética , Hibridização Genética , Mamíferos , Fenótipo , Reprodução , Simpatria
12.
Syst Biol ; 69(6): 1106-1121, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32163159

RESUMO

In order to study evolutionary pattern and process, we need to be able to accurately identify species and the evolutionary lineages from which they are derived. Determining the concordance between genetic and morphological variation of living populations, and then directly comparing extant and fossil morphological data, provides a robust approach for improving our identification of lineages through time. We investigate genetic and shell morphological variation in extant species of Penion marine snails from New Zealand, and extend this analysis into deep time using fossils. We find that genetic and morphological variation identify similar patterns and support most currently recognized extant species. However, some taxonomic over-splitting is detected due to shell size being a poor trait for species delimitation, and we identify incorrect assignment of some fossil specimens. We infer that a single evolutionary lineage (Penion sulcatus) has existed for 22 myr, with most aspects of shell shape and shell size evolving under a random walk. However, by removing samples previously classified as the extinct species P. marwicki, we instead detect morphological stasis for one axis of shell shape variation. This result demonstrates how lineage identification can change our perception of evolutionary pattern and process. [Genotyping by sequencing; geometric morphometrics; morphological evolution; Neogastropoda; phenotype; speciation; stasis.].


Assuntos
Filogenia , Caramujos/classificação , Exoesqueleto/anatomia & histologia , Animais , Fósseis , Nova Zelândia , Caramujos/anatomia & histologia , Caramujos/genética
13.
Mol Phylogenet Evol ; 147: 106783, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32135305

RESUMO

In New Zealand, 13 flightless species of endemic grasshopper are associated with alpine habitats and freeze tolerance. We examined the phylogenetic relationships of the New Zealand species and a subset of Australian alpine grasshoppers using DNA sequences from the entire mitochondrial genome, nuclear 45S rRNA and Histone H3 and H4 loci. Within our sampling, the New Zealand alpine taxa are monophyletic and sister to a pair of alpine Tasmanian grasshoppers. We used six Orthopteran fossils to calibrate a molecular clock analysis to infer that the most recent common ancestor of New Zealand and Tasmanian grasshoppers existed about 20 million years ago, before alpine habitat was available in New Zealand. We inferred a radiation of New Zealand grasshoppers ~13-15 Mya, suggesting alpine species diversification occurred in New Zealand well before the Southern Alps were formed by the mountain building events of the Kaikoura Orogeny 2-5 Mya. This would suggest that either the ancestors of today's New Zealand grasshoppers were not dependent on living in the alpine zone, or they diversified outside of New Zealand.


Assuntos
Evolução Biológica , Ecossistema , Gafanhotos/classificação , Animais , Austrália , Sequência de Bases , Biodiversidade , Núcleo Celular/genética , Fósseis , Genoma Mitocondrial , Geografia , Gafanhotos/genética , Nova Zelândia , Filogenia
14.
Mol Ecol ; 28(17): 3929-3941, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31386772

RESUMO

The outcome of competition between different reproductive strategies within a single species can be used to infer selective advantage of the winning strategy. Where multiple populations have independently lost or gained sexual reproduction it is possible to investigate whether the advantage is contingent on local conditions. In the New Zealand stick insect Clitarchus hookeri, three populations are distinguished by recent change in reproductive strategy and we determine their likely origins. One parthenogenetic population has established in the United Kingdom and we provide evidence that sexual reproduction has been lost in this population. We identify the sexual population from which the parthenogenetic population was derived, but show that the UK females have a post-mating barrier to fertilisation. We also demonstrate that two sexual populations have recently arisen in New Zealand within the natural range of the mtDNA lineage that otherwise characterizes parthenogenesis in this species. We infer independent origins of males at these two locations using microsatellite genotypes. In one population, a mixture of local and nonlocal alleles suggested males were the result of invasion. Males in another population were most probably the result of loss of an X chromosome that produced a male phenotype in situ. Two successful switches in reproductive strategy suggest local competitive advantage for outcrossing over parthenogenetic reproduction. Clitarchus hookeri provides remarkable evidence of repeated and rapid changes in reproductive strategy, with competitive outcomes dependent on local conditions.


Assuntos
Insetos/fisiologia , Animais , Sequência de Bases , Cruzamento , DNA Mitocondrial/genética , Feminino , Variação Genética , Genética Populacional , Genótipo , Insetos/genética , Masculino , Nova Zelândia , Partenogênese , Filogenia , Reprodução , Reino Unido
15.
Insects ; 10(7)2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31295894

RESUMO

The New Zealand stick insect Clitarchus hookeri has both sexual and parthenogenetic (all-female) populations. Sexual populations exhibit a scramble competition mating system with distinctive sex roles, where females are signalers and males are searchers, which may lead to differences in the chemical and morphological traits between sexes. Evidence from a range of insect species has shown a decay of sexual traits is common in parthenogenetic lineages, especially those traits related to mate attraction and location, presumably due to their high cost. However, in some cases, sexual traits remain functional, either due to the recent evolution of the parthenogenetic lineage, low cost of maintenance, or because there might be an advantage in maintaining them. We measured morphological and chemical traits of C. hookeri to identify differences between males and females and between females from sexual and parthenogenetic populations. We also tested the ability of males to discriminate between sexual and parthenogenetic females in a laboratory bioassay. Our results show that male C. hookeri has morphological traits that facilitate mobility (smaller body with disproportionately longer legs) and mate detection (disproportionately longer antennae), and adult females release significantly higher amounts of volatile organic compounds than males when this species is sexually active, in accordance with their distinctive sex roles. Although some differences were detected between sexual and parthenogenetic females, the latter appear to maintain copulatory behaviors and chemical signaling. Males were unable to distinguish between sexual and parthenogenetic females, suggesting that there has been little decay in the sexual traits in the parthenogenetic lineage of C. hookeri.

16.
Int J Parasitol Parasites Wildl ; 7(3): 335-342, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30258780

RESUMO

We studied the population genetics of one population sample of hybrid Mallard x Grey Ducks and their lice in New Zealand. We aimed to document the relationship between ectoparasite load and host phenotype, and test for an association between the mtDNA diversity of the lice and their hosts, which is predicted based on maternal care. We found three feather lice species previously described for these hosts: Anaticola crassicornis (wing louse), Anatoecus dentatus (head louse), and Trinoton querquedulae (body louse). No new or rare lice species were uncovered. Most ducks in our sample were more Mallard-like than Grey Duck-like hybrids for the five colour and plumage traits examined. We confirm that based solely on phenotypic characters it is difficult to distinguish between Mallards, hybrids and Grey Ducks. We detected no association between the number of lice and host phenotype for two of the three louse species (while controlling for bird size). However, the Grey Duck-like hybrids had fewer head lice (A. dentatus) than their Mallard-like counterparts. Only three of the 40 hosts had mtDNA haplotypes that characterise Grey Ducks. We present the first genetic data of Anaticola crassicornis, Anatoecus dentatus and Trinoton querquedulae from New Zealand waterfowl. We found that the lice mtDNA had greater sequence diversity than the homologous gene for the ducks. A mitochondrial phylogeny for A. crassicornis collected from hosts worldwide has been previously published, and we added our novel data to infer evolutionary relationships among worldwide populations of this louse. None of the three lice species showed a close association of parasite and host mtDNA lineage despite lack of paternal care in these duck species.

17.
Mol Phylogenet Evol ; 127: 626-637, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29913310

RESUMO

The relationship between morphology and inheritance is of perennial interest in evolutionary biology and palaeontology. Using three marine snail genera Penion, Antarctoneptunea and Kelletia, we investigate whether systematics based on shell morphology accurately reflect evolutionary lineages indicated by molecular phylogenetics. Members of these gastropod genera have been a taxonomic challenge due to substantial variation in shell morphology, conservative radular and soft tissue morphology, few known ecological differences, and geographical overlap between numerous species. Sampling all sixteen putative taxa identified across the three genera, we infer mitochondrial and nuclear ribosomal DNA phylogenetic relationships within the group, and compare this to variation in adult shell shape and size. Results of phylogenetic analysis indicate that each genus is monophyletic, although the status of some phylogenetically derived and likely more recently evolved taxa within Penion is uncertain. The recently described species P. lineatus is supported by genetic evidence. Morphology, captured using geometric morphometric analysis, distinguishes the genera and matches the molecular phylogeny, although using the same dataset, species and phylogenetic subclades are not identified with high accuracy. Overall, despite abundant variation, we find that shell morphology accurately reflects genus-level classification and the corresponding deep phylogenetic splits identified in this group of marine snails.


Assuntos
Exoesqueleto/anatomia & histologia , Evolução Molecular , Filogenia , Caramujos/anatomia & histologia , Caramujos/genética , Animais , DNA Mitocondrial/genética , DNA Ribossômico/genética , Geografia , Análise de Sequência de DNA , Caramujos/classificação
18.
PLoS One ; 13(4): e0195517, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29694414

RESUMO

Wolbachia is one of the most widespread intracellular bacteria on earth, estimated to infect between 40 and 66% of arthropod species in most ecosystems that have been surveyed. Their significance rests not only in their vast distribution, but also in their ability to modify the reproductive biology of their hosts, which can ultimately affect genetic diversity and speciation of infected populations. Wolbachia has yet to be formally identified in the fauna of New Zealand which has high levels of endemic biodiversity and this represents a gap in our understanding of the global biology of Wolbachia. Using High Throughput Sequencing (HTS) of host DNA in conjunction with traditional molecular techniques we identified six endemic Orthoptera species that were positive for Wolbachia infection. In addition, short-sequence amplification with Wolbachia specific primers applied to New Zealand and introduced invertebrates detected a further 153 individuals positive for Wolbachia. From these short-range DNA amplification products sequence data was obtained for the ftsZ gene region from 86 individuals representing 10 host species. Phylogenetic analysis using the sequences obtained in this study reveals that there are two distinct Wolbachia bacteria lineages in New Zealand hosts belonging to recognised Wolbachia supergroups (A and B). These represent the first described instances of Wolbachia in the New Zealand native fauna, including detection in putative parasitoids of infected Orthoptera suggesting a possible transmission path. Our detection of Wolbachia infections of New Zealand species provides the opportunity to study local transmission of Wolbachia and explore their role in the evolution of New Zealand invertebrates.


Assuntos
Biota , Wolbachia/isolamento & purificação , Animais , Proteínas de Bactérias/genética , Teorema de Bayes , Evolução Biológica , Biota/genética , Biologia Computacional , DNA Bacteriano/análise , Sequenciamento de Nucleotídeos em Larga Escala , Nova Zelândia , Ortópteros/microbiologia , Filogenia , Vespas/microbiologia , Wolbachia/genética
19.
Data Brief ; 16: 172-181, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29201984

RESUMO

This data article provides genome statistics, phylogenetic networks and trees for a phylogenetic study of Southern Hemisphere Buccinulidae marine snails [1]. We present alternative phylogenetic reconstructions using mitochondrial genomic and 45S nuclear ribosomal cassette DNA sequence data, as well as trees based on short-length DNA sequence data. We also investigate the proportion of variable sites per sequence length for a set of mitochondrial and nuclear ribosomal genes, in order to examine the phylogenetic information provided by different DNA markers. Sequence alignment files used for phylogenetic reconstructions in the main text and this article are provided here.

20.
Mol Ecol ; 26(20): 5752-5772, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28805283

RESUMO

The evolutionary significance of spatial habitat gaps has been well recognized since Alfred Russel Wallace compared the faunas of Bali and Lombok. Gaps between islands influence population structuring of some species, and flightless birds are expected to show strong partitioning even where habitat gaps are narrow. We examined the population structure of the most numerous living flightless land bird in New Zealand, Weka (Gallirallus australis). We surveyed Weka and their feather lice in native and introduced populations using genetic data gathered from DNA sequences of mitochondrial genes and nuclear ß-fibrinogen and five microsatellite loci. We found low genetic diversity among extant Weka population samples. Two genetic clusters were evident in the mtDNA from Weka and their lice, but partitioning at nuclear loci was less abrupt. Many formerly recognized subspecies/species were not supported; instead, we infer one subspecies for each of the two main New Zealand islands. Although currently range restricted, North Island Weka have higher mtDNA diversity than the more wide-ranging southern Weka. Mismatch and neutrality statistics indicate North Island Weka experienced rapid and recent population reduction, while South Island Weka display the signature of recent expansion. Similar haplotype data from a widespread flying relative of Weka and other New Zealand birds revealed instances of North Island-South Island partitioning associated with a narrow habitat gap (Cook Strait). However, contrasting patterns indicate priority effects and other ecological factors have a strong influence on spatial exchange at this scale.


Assuntos
Aves/genética , Ecossistema , Variação Genética , Genética Populacional , Distribuição Animal , Animais , Aves/parasitologia , DNA Mitocondrial/genética , Fibrinogênio/genética , Fluxo Gênico , Haplótipos , Íntrons , Ilhas , Funções Verossimilhança , Repetições de Microssatélites , Nova Zelândia , Ftirápteros/genética , Filogenia , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA