Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38895222

RESUMO

Complex traits are determined by the effects of multiple genetic variants, multiple environmental factors, and potentially their interaction. Predicting complex trait phenotypes from genotypes is a fundamental task in quantitative genetics that was pioneered in agricultural breeding for selection purposes. However, it has recently become important in human genetics. While prediction accuracy for some human complex traits is appreciable, this remains low for most traits. A promising way to improve prediction accuracy is by including not only genetic information but also environmental information in prediction models. However, environmental factors can, in turn, be genetically determined. This phenomenon gives rise to a correlation between the genetic and environmental components of the phenotype, which violates the assumption of independence between the genetic and environmental components of most statistical methods for polygenic modeling. In this work, we investigated the impact of including 27 lifestyle variables as well as genotype information (and their interaction) for predicting diastolic blood pressure, systolic blood pressure, and pulse pressure in older individuals in UK Biobank. The 27 lifestyle variables were included as either raw variables or adjusted by genetic and other non-genetic factors. The results show that including both lifestyle and genetic data improved prediction accuracy compared to using either piece of information alone. Both prediction accuracy and bias can improve substantially for some traits when the models account for the lifestyle variables after their proper adjustment. Our work confirms the utility of including environmental information in polygenic models of complex traits and highlights the importance of proper handling of the environmental variables.

2.
bioRxiv ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38895364

RESUMO

Accurate prediction of complex traits is an important task in quantitative genetics that has become increasingly relevant for personalized medicine. Genotypes have traditionally been used for trait prediction using a variety of methods such as mixed models, Bayesian methods, penalized regressions, dimension reductions, and machine learning methods. Recent studies have shown that gene expression levels can produce higher prediction accuracy than genotypes. However, only a few prediction methods were used in these studies. Thus, a comprehensive assessment of methods is needed to fully evaluate the potential of gene expression as a predictor of complex trait phenotypes. Here, we used data from the Drosophila Genetic Reference Panel (DGRP) to compare the ability of several existing statistical learning methods to predict starvation resistance from gene expression in the two sexes separately. The methods considered differ in assumptions about the distribution of gene effect sizes - ranging from models that assume that every gene affects the trait to more sparse models - and their ability to capture gene-gene interactions. We also used functional annotation (i.e., Gene Ontology (GO)) as an external source of biological information to inform prediction models. The results show that differences in prediction accuracy between methods exist, although they are generally not large. Methods performing variable selection gave higher accuracy in females while methods assuming a more polygenic architecture performed better in males. Incorporating GO annotations further improved prediction accuracy for a few GO terms of biological significance. Biological significance extended to the genes underlying highly predictive GO terms with different genes emerging between sexes. Notably, the Insulin-like Receptor (InR) was prevalent across methods and sexes. Our results confirmed the potential of transcriptomic prediction and highlighted the importance of selecting appropriate methods and strategies in order to achieve accurate predictions.

3.
bioRxiv ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38766136

RESUMO

Polygenic prediction of complex trait phenotypes has become important in human genetics, especially in the context of precision medicine. Recently, Morgante et al. introduced mr.mash, a flexible and computationally efficient method that models multiple phenotypes jointly and leverages sharing of effects across such phenotypes to improve prediction accuracy. However, a drawback of mr.mash is that it requires individual-level data, which are often not publicly available. In this work, we introduce mr.mash-rss, an extension of the mr.mash model that requires only summary statistics from Genome-Wide Association Studies (GWAS) and linkage disequilibrium (LD) estimates from a reference panel. By using summary data, we achieve the twin goal of increasing the applicability of the mr.mash model to data sets that are not publicly available and making it scalable to biobank-size data. Through simulations, we show that mr.mash-rss is competitive with, and often outperforms, current state-of-the-art methods for single- and multi-phenotype polygenic prediction in a variety of scenarios that differ in the pattern of effect sharing across phenotypes, the number of phenotypes, the number of causal variants, and the genomic heritability. We also present a real data analysis of 16 blood cell phenotypes in UK Biobank, showing that mr.mash-rss achieves higher prediction accuracy than competing methods for the majority of traits, especially when the data has smaller sample size.

4.
PLoS Genet ; 19(7): e1010539, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37418505

RESUMO

Predicting phenotypes from genotypes is a fundamental task in quantitative genetics. With technological advances, it is now possible to measure multiple phenotypes in large samples. Multiple phenotypes can share their genetic component; therefore, modeling these phenotypes jointly may improve prediction accuracy by leveraging effects that are shared across phenotypes. However, effects can be shared across phenotypes in a variety of ways, so computationally efficient statistical methods are needed that can accurately and flexibly capture patterns of effect sharing. Here, we describe new Bayesian multivariate, multiple regression methods that, by using flexible priors, are able to model and adapt to different patterns of effect sharing and specificity across phenotypes. Simulation results show that these new methods are fast and improve prediction accuracy compared with existing methods in a wide range of settings where effects are shared. Further, in settings where effects are not shared, our methods still perform competitively with state-of-the-art methods. In real data analyses of expression data in the Genotype Tissue Expression (GTEx) project, our methods improve prediction performance on average for all tissues, with the greatest gains in tissues where effects are strongly shared, and in the tissues with smaller sample sizes. While we use gene expression prediction to illustrate our methods, the methods are generally applicable to any multi-phenotype applications, including prediction of polygenic scores and breeding values. Thus, our methods have the potential to provide improvements across fields and organisms.


Assuntos
Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Teorema de Bayes , Genótipo , Fenótipo , Simulação por Computador , Expressão Gênica
5.
G3 (Bethesda) ; 10(12): 4599-4613, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33106232

RESUMO

The ability to accurately predict complex trait phenotypes from genetic and genomic data are critical for the implementation of personalized medicine and precision agriculture; however, prediction accuracy for most complex traits is currently low. Here, we used data on whole genome sequences, deep RNA sequencing, and high quality phenotypes for three quantitative traits in the ∼200 inbred lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) to compare the prediction accuracies of gene expression and genotypes for three complex traits. We found that expression levels (r = 0.28 and 0.38, for females and males, respectively) provided higher prediction accuracy than genotypes (r = 0.07 and 0.15, for females and males, respectively) for starvation resistance, similar prediction accuracy for chill coma recovery (null for both models and sexes), and lower prediction accuracy for startle response (r = 0.15 and 0.14 for female and male genotypes, respectively; and r = 0.12 and 0.11, for females and male transcripts, respectively). Models including both genotype and expression levels did not outperform the best single component model. However, accuracy increased considerably for all the three traits when we included gene ontology (GO) category as an additional layer of information for both genomic variants and transcripts. We found strongly predictive GO terms for each of the three traits, some of which had a clear plausible biological interpretation. For example, for starvation resistance in females, GO:0033500 (r = 0.39 for transcripts) and GO:0032870 (r = 0.40 for transcripts), have been implicated in carbohydrate homeostasis and cellular response to hormone stimulus (including the insulin receptor signaling pathway), respectively. In summary, this study shows that integrating different sources of information improved prediction accuracy and helped elucidate the genetic architecture of three Drosophila complex phenotypes.


Assuntos
Drosophila , Herança Multifatorial , Animais , Drosophila melanogaster/genética , Feminino , Genótipo , Masculino , Modelos Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único
6.
Genome Res ; 30(3): 485-496, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32144088

RESUMO

A major challenge in modern biology is to understand how naturally occurring variation in DNA sequences affects complex organismal traits through networks of intermediate molecular phenotypes. This question is best addressed in a genetic mapping population in which all molecular polymorphisms are known and for which molecular endophenotypes and complex traits are assessed on the same genotypes. Here, we performed deep RNA sequencing of 200 Drosophila Genetic Reference Panel inbred lines with complete genome sequences and for which phenotypes of many quantitative traits have been evaluated. We mapped expression quantitative trait loci for annotated genes, novel transcribed regions, transposable elements, and microbial species. We identified host variants that affect expression of transposable elements, independent of their copy number, as well as microbiome composition. We constructed sex-specific expression quantitative trait locus regulatory networks. These networks are enriched for novel transcribed regions and target genes in heterochromatin and euchromatic regions of reduced recombination, as well as genes regulating transposable element expression. This study provides new insights regarding the role of natural genetic variation in regulating gene expression and generates testable hypotheses for future functional analyses.


Assuntos
Drosophila melanogaster/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Animais , Elementos de DNA Transponíveis , Drosophila melanogaster/metabolismo , Drosophila melanogaster/microbiologia , Feminino , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Microbiota/genética , Locos de Características Quantitativas , Análise de Sequência de RNA
7.
Genome Res ; 30(3): 392-405, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31694867

RESUMO

How effects of DNA sequence variants are transmitted through intermediate endophenotypes to modulate organismal traits remains a central question in quantitative genetics. This problem can be addressed through a systems approach in a population in which genetic polymorphisms, gene expression traits, metabolites, and complex phenotypes can be evaluated on the same genotypes. Here, we focused on the metabolome, which represents the most proximal link between genetic variation and organismal phenotype, and quantified metabolite levels in 40 lines of the Drosophila melanogaster Genetic Reference Panel. We identified sex-specific modules of genetically correlated metabolites and constructed networks that integrate DNA sequence variation and variation in gene expression with variation in metabolites and organismal traits, including starvation stress resistance and male aggression. Finally, we asked to what extent SNPs and metabolites can predict trait phenotypes and generated trait- and sex-specific prediction models that provide novel insights about the metabolomic underpinnings of complex phenotypes.


Assuntos
Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Metaboloma/genética , Animais , Feminino , Estudos de Associação Genética , Variação Genética , Masculino , Fenótipo , Locos de Características Quantitativas
8.
Heredity (Edinb) ; 120(6): 500-514, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29426878

RESUMO

Predicting complex phenotypes from genomic data is a fundamental aim of animal and plant breeding, where we wish to predict genetic merits of selection candidates; and of human genetics, where we wish to predict disease risk. While genomic prediction models work well with populations of related individuals and high linkage disequilibrium (LD) (e.g., livestock), comparable models perform poorly for populations of unrelated individuals and low LD (e.g., humans). We hypothesized that low prediction accuracies in the latter situation may occur when the genetics architecture of the trait departs from the infinitesimal and additive architecture assumed by most prediction models. We used simulated data for 10,000 lines based on sequence data from a population of unrelated, inbred Drosophila melanogaster lines to evaluate this hypothesis. We show that, even in very simplified scenarios meant as a stress test of the commonly used Genomic Best Linear Unbiased Predictor (G-BLUP) method, using all common variants yields low prediction accuracy regardless of the trait genetic architecture. However, prediction accuracy increases when predictions are informed by the genetic architecture inferred from mapping the top variants affecting main effects and interactions in the training data, provided there is sufficient power for mapping. When the true genetic architecture is largely or partially due to epistatic interactions, the additive model may not perform well, while models that account explicitly for interactions generally increase prediction accuracy. Our results indicate that accounting for genetic architecture can improve prediction accuracy for quantitative traits.


Assuntos
Estudos de Associação Genética , Genética Populacional , Modelos Genéticos , Locos de Características Quantitativas , Característica Quantitativa Herdável , Algoritmos , Alelos , Animais , Simulação por Computador , Interpretação Estatística de Dados , Bases de Dados Genéticas , Drosophila melanogaster/genética , Epistasia Genética , Frequência do Gene , Variação Genética , Estudo de Associação Genômica Ampla/métodos , Genótipo , Desequilíbrio de Ligação , Reprodutibilidade dos Testes
9.
Genetics ; 201(2): 487-97, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26269504

RESUMO

Genetic studies usually focus on quantifying and understanding the existence of genetic control on expected phenotypic outcomes. However, there is compelling evidence suggesting the existence of genetic control at the level of environmental variability, with some genotypes exhibiting more stable and others more volatile performance. Understanding the mechanisms responsible for environmental variability not only informs medical questions but is relevant in evolution and in agricultural science. In this work fully sequenced inbred lines of Drosophila melanogaster were analyzed to study the nature of genetic control of environmental variance for two quantitative traits: starvation resistance (SR) and startle response (SL). The evidence for genetic control of environmental variance is compelling for both traits. Sequence information is incorporated in random regression models to study the underlying genetic signals, which are shown to be different in the two traits. Genomic variance in sexual dimorphism was found for SR but not for SL. Indeed, the proportion of variance captured by sequence information and the contribution to this variance from four chromosome segments differ between sexes in SR but not in SL. The number of studies of environmental variation, particularly in humans, is limited. The availability of full sequence information and modern computationally intensive statistical methods provides opportunities for rigorous analyses of environmental variability.


Assuntos
Interação Gene-Ambiente , Locos de Características Quantitativas/genética , Reflexo de Sobressalto/genética , Inanição/genética , Animais , Cromossomos/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Genótipo , Fenótipo
10.
Sci Rep ; 5: 9785, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25943032

RESUMO

Individuals of the same genotype do not have the same phenotype for quantitative traits when reared under common macro-environmental conditions, a phenomenon called micro-environmental plasticity. Genetic variation in micro-environmental plasticity is assumed in models of the evolution of phenotypic variance, and is important in applied breeding and personalized medicine. Here, we quantified genetic variation for micro-environmental plasticity for three quantitative traits in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel. We found substantial genetic variation for micro-environmental plasticity for all traits, with broad sense heritabilities of the same magnitude or greater than those of trait means. Micro-environmental plasticity is not correlated with residual segregating variation, is trait-specific, and has genetic correlations with trait means ranging from zero to near unity. We identified several candidate genes associated with micro-environmental plasticity of startle response, including Drosophila Hsp90, setting the stage for future genetic dissection of this phenomenon.


Assuntos
Aclimatação/genética , Plasticidade Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Interação Gene-Ambiente , Locos de Características Quantitativas/genética , Animais , Ecossistema , Aptidão Genética/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA