Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharm Res ; 41(4): 795-806, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38536615

RESUMO

PURPOSE: Quantifying unencapsulated drug concentrations in tissues is crucial for understanding the mechanisms underlying the efficacy and safety of liposomal drugs; however, the methodology for this has not been fully established. Herein, we aimed to investigate the enhanced therapeutic potential of a pegylated liposomal formulation of topotecan (FF-10850) by analyzing the concentrations of the unencapsulated drug in target tissues, to guide the improvement of its dosing regimen. METHODS: We developed a method for measuring unencapsulated topotecan concentrations in tumor and bone marrow interstitial fluid (BM-ISF) and applied this method to pharmacokinetic assessments. The ratios of the area under the concentration-time curves (AUCs) between tumor and BM-ISF were calculated for total and unencapsulated topotecan. DNA damage and antitumor effects of FF-10850 or non-liposomal topotecan (TPT) were evaluated in an ES-2 mice xenograft model. RESULTS: FF-10850 exhibited a much larger AUC ratio between tumor and BM-ISF for unencapsulated topotecan (2.96), but not for total topotecan (0.752), than TPT (0.833). FF-10850 promoted milder DNA damage in the bone marrow than TPT; however, FF-10850 and TPT elicited comparable DNA damage in the tumor. These findings highlight the greater tumor exposure to unencapsulated topotecan and lower bone marrow exposure to FF-10850 than TPT. The dosing regimen was successfully improved based on the kinetics of unencapsulated topotecan and DNA damage. CONCLUSIONS: Tissue pharmacokinetics of unencapsulated topotecan elucidated the favorable pharmacological properties of FF-10850. Evaluation of tissue exposure to an unencapsulated drug with appropriate pharmacodynamic markers can be valuable in optimizing liposomal drugs and dosing regimens.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Camundongos , Animais , Topotecan/farmacocinética , Inibidores da Topoisomerase I/farmacocinética , Lipossomos , Neoplasias/tratamento farmacológico , Modelos Animais de Doenças , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
2.
Mol Cancer Ther ; 22(12): 1454-1464, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37683276

RESUMO

Topotecan, an approved treatment for refractory or recurrent ovarian cancer, has clinical limitations such as rapid clearance and hematologic toxicity. To overcome these limitations and maximize clinical benefit, we designed FF-10850, a dihydrosphingomyelin-based liposomal topotecan. FF-10850 demonstrated superior antitumor activity to topotecan in ovarian cancer cell line-based xenograft models, as well as in a clinically relevant DF181 platinum-refractory ovarian cancer patient-derived xenograft model. The safety profile was also improved with mitigation of hematologic toxicity. The improved antitumor activity and safety profile are achieved via its preferential accumulation and payload release triggered in the tumor microenvironment. Our data indicate that tumor-associated macrophages internalize FF-10850, resulting in complete payload release. The release mechanism also appears to be mediated by high ammonia concentration resulting from glutaminolysis, which is activated by tumor metabolic reprogramming. In ammonia-rich conditions, FF-10850 released payload more rapidly and to a greater extent than liposomal doxorubicin, a currently approved treatment for ovarian cancer. FF-10850 significantly enhanced antitumor activity in combination with carboplatin or PARP inhibitor without detrimental effects on body weight in murine xenograft models, and demonstrated synergistic antitumor activity combined with anti-PD-1 antibody with the development of tumor antigen-specific immunity. These results support phase I investigation of FF-10850 for the treatment of solid tumors including ovarian cancer (NCT04047251), and further evaluation in combination settings.


Assuntos
Neoplasias Ovarianas , Topotecan , Feminino , Humanos , Animais , Camundongos , Topotecan/farmacologia , Amônia/uso terapêutico , Microambiente Tumoral , Neoplasias Ovarianas/patologia , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/uso terapêutico , Macrófagos/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA