Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38659385

RESUMO

Here, an artificial intelligence (AI)-based approach was employed to optimize the production of electrospun scaffolds for in vivo wound healing applications. By combining polycaprolactone (PCL) and poly(ethylene glycol) (PEG) in various concentration ratios, dissolved in chloroform (CHCl3) and dimethylformamide (DMF), 125 different polymer combinations were created. From these polymer combinations, electrospun nanofiber meshes were produced and characterized structurally and mechanically via microscopic techniques, including chemical composition and fiber diameter determination. Subsequently, these data were used to train a neural network, creating an AI model to predict the optimal scaffold production solution. Guided by the predictions and experimental outcomes of the AI model, the most promising scaffold for further in vitro analyses was identified. Moreover, we enriched this selected polymer combination by incorporating antibiotics, aiming to develop electrospun nanofiber scaffolds tailored for in vivo wound healing applications. Our study underscores three noteworthy conclusions: (i) the application of AI is pivotal in the fields of material and biomedical sciences, (ii) our methodology provides an effective blueprint for the initial screening of biomedical materials, and (iii) electrospun PCL/PEG antibiotic-bearing scaffolds exhibit outstanding results in promoting neoangiogenesis and facilitating in vivo wound treatment.

2.
Front Microbiol ; 15: 1332276, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476954

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the COVID-19 pandemic, has been evolving rapidly causing emergence of new variants and health uncertainties. Monitoring the evolution of the virus was of the utmost importance for public health interventions and the development of national and global mitigation strategies. Here, we report national data on the emergence of new variants, their distribution, and dynamics in a 3-year study conducted from March 2020 to the end of January 2023 in the Republic of Serbia. Nasopharyngeal and oropharyngeal swabs from 2,398 COVID-19-positive patients were collected and sequenced using three different next generation technologies: Oxford Nanopore, Ion Torrent, and DNBSeq. In the subset of 2,107 SARS-CoV-2 sequences which met the quality requirements, detection of mutations, assignment to SARS-CoV-2 lineages, and phylogenetic analysis were performed. During the 3-year period, we detected three variants of concern, namely, Alpha (5.6%), Delta (7.4%), and Omicron (70.3%) and one variant of interest-Omicron recombinant "Kraken" (XBB1.5) (<1%), whereas 16.8% of the samples belonged to other SARS-CoV-2 (sub)lineages. The detected SARS-CoV-2 (sub)lineages resulted in eight COVID-19 pandemic waves in Serbia, which correspond to the pandemic waves reported in Europe and the United States. Wave dynamics in Serbia showed the most resemblance with the profile of pandemic waves in southern Europe, consistent with the southeastern European location of Serbia. The samples were assigned to sixteen SARS-CoV-2 Nextstrain clades: 20A, 20B, 20C, 20D, 20E, 20G, 20I, 21J, 21K, 21L, 22A, 22B, 22C, 22D, 22E, and 22F and six different Omicron recombinants (XZ, XAZ, XAS, XBB, XBF, and XBK). The 10 most common mutations detected in the coding and untranslated regions of the SARS-CoV-2 genomes included four mutations affecting the spike protein (S:D614G, S:T478K, S:P681H, and S:S477N) and one mutation at each of the following positions: 5'-untranslated region (5'UTR:241); N protein (N:RG203KR); NSP3 protein (NSP3:F106F); NSP4 protein (NSP4:T492I); NSP6 protein (NSP6: S106/G107/F108 - triple deletion), and NSP12b protein (NSP12b:P314L). This national-level study is the most comprehensive in terms of sequencing and genomic surveillance of SARS-CoV-2 during the pandemic in Serbia, highlighting the importance of establishing and maintaining good national practice for monitoring SARS-CoV-2 and other viruses circulating worldwide.

3.
Front Microbiol ; 13: 906312, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722344

RESUMO

Bacterial infections have become increasingly difficult to treat due to the occurrence of antibiotic-resistant strains. A promising strategy to increase the efficacy of therapy is to combine antibacterials with agents that decrease pathogen virulence via the modulation of the quorum sensing (QS). Lactonases inhibit acylated homoserine lactone (AHL)-mediated QS in Gram-negative bacteria, including the leading nosocomial pathogen Pseudomonas aeruginosa. Here we describe the characteristics of heterologously expressed YtnP lactonase from Bacillus paralicheniformis ZP1 (YtnP-ZP1) isolated from agricultural soil using the culture enrichment method. Purified YtnP-ZP1 hydrolyzed different AHLs with preference to substrates with long acyl residues as evaluated in assays with biosensors and HPLC. The enzyme showed good thermostability and activity in a wide temperature range. YtnP-ZP1 in 50 µg mL-1 concentration reduced the amount of P. aeruginosa-produced long-chain AHLs by 85%, while it hydrolyzed 50% of short-chain AHLs. Incubation of P. aeruginosa PAO1 with YtnP-ZP1 reduced its swarming motility and elastolytic activity without bactericidal effect. YtnP-ZP1 caused the inhibition of biofilm formation and disintegration of mature biofilms in P. aeruginosa PAO1 and multiresistant clinical strain BR5H that was visualized by crystal violet staining. The treatment with YtnP-ZP1 in concentrations higher than 25 µg mL-1 improved the survival of P. aeruginosa PAO1-infected zebrafish (Danio rerio), rescuing 80% of embryos, while in combination with tobramycin or gentamicin survival rate increased to 100%. The treatment of P. aeruginosa PAO1 biofilms on infected zebrafish tail wounds with 50 µg mL-1 YtnP-ZP1 and 2 × MIC tobramycin led to infection clearing in 2 days. The extensive toxicity studies proved YtnP-ZP1 was non-toxic to human cells and zebrafish. In conclusion, novel YtnP-ZP1 lactonase with its effective anti-virulence activity could be used to increase the efficacy of clinically approved antibiotics in clearing both systemic and biofilm-associated P. aeruginosa infections.

4.
Molecules ; 26(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466808

RESUMO

This study investigates the modification of commercial cellulose acetate microfiltration membranes by supercritical solvent impregnation with thymol to provide them with antibacterial properties. The impregnation process was conducted in a batch mode, and the effect of pressure and processing time on thymol loading was followed. The impact of the modification on the membrane's microstructure was analyzed using scanning electron and ion-beam microscopy, and membranes' functionality was tested in a cross-flow filtration system. The antibiofilm properties of the obtained materials were studied against Staphyloccocus aureus and Pseudomonas aeruginosa, while membranes' blocking in contact with bacteria was examined for S. aureus and Escherichia coli. The results revealed a fast impregnation process with high thymol loadings achievable after just 0.5 h at 15 MPa and 20 MPa. The presence of 20% of thymol provided strong antibiofilm properties against the tested strains without affecting the membrane's functionality. The study showed that these strong antibacterial properties could be implemented to the commercial membranes' defined polymeric structure in a short and environmentally friendly process.


Assuntos
Antibacterianos/farmacologia , Celulose/análogos & derivados , Escherichia coli/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Solventes/química , Staphylococcus aureus/efeitos dos fármacos , Timol/farmacologia , Antibacterianos/química , Celulose/química , Membranas/química , Membranas/efeitos dos fármacos , Timol/química
5.
Food Funct ; 11(9): 7793-7803, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32808624

RESUMO

Chokeberry (Aronia melanocarpa) fruit extracts (CE) are rich in polyphenols and usually exhibit immunomodulatory, anti-viral and anti-bacterial effects. We have previously shown that the CE used in this study activated macrophages and stimulated effector T cell differentiation in vitro. When applied orally to healthy mice, CE increased the proportion of CD11c+ dendritic cells in the gut-associated lymphoid tissue. CE-pretreated BALB/c mice readily eradicated orally ingested Listeria monocytogenes as evidenced by a slighter decrease in body weight and number of bacteria recovered from the spleen and reduced spleen size compared to the control infected mice. CE pretreatment in infected mice resulted in higher proportions of CD11b+ macrophages and CD8+ cytotoxic T cells both in the gut and the spleen. Phagocytosis, reactive oxygen species production and the proportions of activated CD86+ macrophages (CD11b+) and dendritic cells (CD11c+) were also enhanced in CE-pretreated infected mice. Furthermore, the expression of inducible nitric oxide synthase and IL-6 was increased in CE-pretreated infected mice and similar results were obtained in peritoneal macrophages in vitro. This effect of CE was associated with increased phosphorylation of IκB and Notch1 production. Finally, CE pretreatment elevated the proportion of perforin-producing cells in the spleen compared to control infected mice. This study demonstrates that prophylactic treatment with CE leads to more rapid eradication of bacterial infection with L. monocytogenes predominantly through increased activity of myeloid cells in the gut and in the spleen.


Assuntos
Frutas/química , Fatores Imunológicos/farmacologia , Listeria monocytogenes , Listeriose/imunologia , Photinia/química , Extratos Vegetais/farmacologia , Animais , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Imunomodulação , Intestino Delgado/imunologia , Listeria monocytogenes/isolamento & purificação , Listeriose/tratamento farmacológico , Listeriose/microbiologia , Tecido Linfoide/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico Sintase Tipo II/metabolismo , Fagocitose , Fitoterapia , Espécies Reativas de Oxigênio/metabolismo , Baço/imunologia , Baço/microbiologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo
6.
Molecules ; 25(8)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326481

RESUMO

Many traditional remedies represent potential candidates for integration with modern medical practice, but credible data on their activities are often scarce. For the first time, the anti-virulence potential and the safety for human use of the ethanol extracts of two medicinal plants, Persicaria maculosa (PEM) and Bistorta officinalis (BIO), have been addressed. Ethanol extracts of both plants exhibited anti-virulence activity against the medically important opportunistic pathogen Pseudomonas aeruginosa. At the subinhibitory concentration of 50 µg/mL, the extracts demonstrated a maximal inhibitory effect (approx. 50%) against biofilm formation, the highest reduction of pyocyanin production (47% for PEM and 59% for BIO) and completely halted the swarming motility of P. aeruginosa. Both extracts demonstrated better anti-quorum sensing and antibiofilm activities, and a better ability to interfere with LasR receptor, than the tested dominant extracts' constituents. The bioactive concentrations of the extracts were not toxic in the zebrafish model system. This study represents an initial step towards the integration of P. maculosa and B. officinalis for use in the treatment of Pseudomonas infections.


Assuntos
Anti-Infecciosos/farmacologia , Extratos Vegetais/farmacologia , Polygonaceae/química , Virulência/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/química , Biofilmes/efeitos dos fármacos , Linhagem Celular , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/fisiologia , Humanos , Testes de Sensibilidade Microbiana , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Percepção de Quorum/efeitos dos fármacos , Transdução de Sinais
7.
Adv Exp Med Biol ; 1282: 37-69, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31515709

RESUMO

Infective diseases have become health threat of a global proportion due to appearance and spread of microorganisms resistant to majority of therapeutics currently used for their treatment. Therefore, there is a constant need for development of new antimicrobial agents, as well as novel therapeutic strategies. Quinolines and quinolones, isolated from plants, animals, and microorganisms, have demonstrated numerous biological activities such as antimicrobial, insecticidal, anti-inflammatory, antiplatelet, and antitumor. For more than two centuries quinoline/quinolone moiety has been used as a scaffold for drug development and even today it represents an inexhaustible inspiration for design and development of novel semi-synthetic or synthetic agents exhibiting broad spectrum of bioactivities. The structural diversity of synthetized compounds provides high and selective activity attained through different mechanisms of action, as well as low toxicity on human cells. This review describes quinoline and quinolone derivatives with antibacterial, antifungal, anti-virulent, antiviral, and anti-parasitic activities with the focus on the last 10 years literature.


Assuntos
Antibacterianos , Antifúngicos , Antiparasitários , Antivirais , Quinolinas , Quinolonas , Animais , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antiparasitários/farmacologia , Antivirais/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Quinolinas/farmacologia , Quinolonas/farmacologia , Relação Estrutura-Atividade , Virulência/efeitos dos fármacos
8.
Pathog Dis ; 76(4)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29684116

RESUMO

Pseudomonas aeruginosa has been amongst the top 10 'superbugs' worldwide and is causing infections with poor outcomes in both humans and animals. From 202 P. aeruginosa isolates (n = 121 animal and n = 81 human), 40 were selected on the basis of biofilm-forming ability and were comparatively characterized in terms of virulence determinants to the type strain P. aeruginosa PAO1. Biofilm formation, pyocyanin and hemolysin production, and bacterial motility patterns were compared with the ability to kill human cell line A549 in vitro. On average, there was no significant difference between levels of animal and human cytotoxicity, while human isolates produced higher amounts of pyocyanin, hemolysins and showed increased swimming ability. Non-parametric statistical analysis identified the highest positive correlation between hemolysis and the swarming ability. For the first time an ensemble machine learning approach used on the in vitro virulence data determined the highest relative predictive importance of the submerged biofilm formation for the cytotoxicity, as an indicator of the infection ability. The findings from the in vitro study were validated in vivo using zebrafish (Danio rerio) embryos. This study highlighted no major differences between P. aeruginosa species isolated from animal and human infections and the importance of pyocyanin production in cytotoxicity and infection ability.


Assuntos
Biofilmes/efeitos dos fármacos , Proteínas Hemolisinas/toxicidade , Pseudomonas aeruginosa/patogenicidade , Piocianina/toxicidade , Fatores de Virulência/toxicidade , Células A549 , Animais , Biofilmes/crescimento & desenvolvimento , Sobrevivência Celular/efeitos dos fármacos , Embrião não Mamífero , Expressão Gênica , Proteínas Hemolisinas/biossíntese , Proteínas Hemolisinas/genética , Hemólise/efeitos dos fármacos , Especificidade de Hospedeiro , Humanos , Aprendizado de Máquina , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo , Piocianina/biossíntese , Piocianina/genética , Virulência , Fatores de Virulência/biossíntese , Fatores de Virulência/genética , Peixe-Zebra
9.
ACS Chem Biol ; 12(5): 1425-1434, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28350449

RESUMO

Antibiotic resistance has become a serious global threat to public health; therefore, improved strategies and structurally novel antimicrobials are urgently needed to combat infectious diseases. Here we report a new type of highly potent 4-aminoquinoline derivatives as quorum sensing inhibitors in Serratia marcescens and Pseudomonas aeruginosa, exhibiting weak bactericidal activities (minimum inhibitory concentration (MIC) > 400 µM). Through detailed structure-activity study, we have identified 7-Cl and 7-CF3 substituted N-dodecylamino-4-aminoquinolines (5 and 10) as biofilm formation inhibitors with 50% biofilm inhibition at 69 µM and 63 µM in S. marcescens and P. aeruginosa, respectively. These two compounds, 5 and 10, are the first quinoline derivatives with anti-biofilm formation activity reported in S. marcescens. Quantitative structure-activity relationship (QSAR) analysis identified structural descriptors such as Wiener indices, hyper-distance-path index (HDPI), mean topological charge (MTC), topological charge index (TCI), and log D(o/w)exp as the most influential in biofilm inhibition in this bacterial species. Derivative 10 is one of the most potent quinoline type inhibitors of pyocyanin production described so far (IC50 = 2.5 µM). While we have demonstrated that 5 and 10 act as Pseudomonas quinolone system (PQS) antagonists, the mechanism of inhibition of S. marcescens biofilm formation with these compounds remains open since signaling similar to P. aeruginosa PQS system has not yet been described in Serratia and activity of these compounds on acylhomoserine lactone (AHL) signaling has not been detected. Our data show that 7-Cl and 7-CF3 substituted N-dodecylamino-4-aminoquinolines present the promising scaffolds for developing antivirulence and anti-biofilm formation agents against multidrug-resistant bacterial species.


Assuntos
Aminoquinolinas/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Serratia marcescens/efeitos dos fármacos , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Relação Quantitativa Estrutura-Atividade
10.
BMC Microbiol ; 10: 100, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20359357

RESUMO

BACKGROUND: Mycobacterium avium subsp hominissuis (previously Mycobacterium avium subsp avium) is an environmental organism associated with opportunistic infections in humans. Mycobacterium hominissuis infects and replicates within mononuclear phagocytes. Previous study characterized an attenuated mutant in which the PPE gene (MAV_2928) homologous to Rv1787 was inactivated. This mutant, in contrast to the wild-type bacterium, was shown both to have impaired the ability to replicate within macrophages and to have prevented phagosome/lysosome fusion. RESULTS: MAV_2928 gene is primarily upregulated upon phagocytosis. The transcriptional profile of macrophages infected with the wild-type bacterium and the mutant were examined using DNA microarray, which showed that the two bacteria interact uniquely with mononuclear phagocytes. Based on the results, it was hypothesized that the phagosome environment and vacuole membrane of the wild-type bacterium might differ from the mutant. Wild-type bacterium phagosomes expressed a number of proteins different from those infected with the mutant. Proteins on the phagosomes were confirmed by fluorescence microscopy and Western blot. The environment in the phagosome of macrophages infected with the mutant differed from the environment of vacuoles with M. hominissuis wild-type in the concentration of zinc, manganese, calcium and potassium. CONCLUSION: The results suggest that the MAV_2928 gene/operon might participate in the establishment of bacterial intracellular environment in macrophages.


Assuntos
Proteínas de Bactérias/fisiologia , Monócitos/microbiologia , Mycobacterium avium/patogenicidade , Vacúolos/metabolismo , Vacúolos/microbiologia , Fatores de Virulência/fisiologia , Proteínas de Bactérias/genética , Linhagem Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Fatores de Virulência/genética
11.
Protein J ; 28(7-8): 326-32, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19763405

RESUMO

The mechanism of resistance to aminoglycosides based on methylation of their target, 16S rRNA, was until recently described only in antibiotic producing microorganisms. However, equivalent methyltransferases have now also been identified among numerous clinical Gram-negative pathogenic isolates. We have cloned, expressed, and purified GrmA, the aminoglycoside-resistance methyltransferase from Micromonospora purpurea, producer of gentamicin complex. Two vectors were created that express protein with an N-terminal 6x histidine tag with and without an enterokinase recognition producing proteins His(6)-EK-GrmA and His(6)-GrmA, respectively. The activity of both recombinant proteins was demonstrated in vivo. After optimized expression and native purification both protein variants proved to be active in in vitro methylation assays. This work lays a foundation for future detailed biochemical, structural and pharmacological studies with this member of an important group of aminoglycoside-resistance enzymes.


Assuntos
Aminoglicosídeos/farmacologia , Clonagem Molecular/métodos , Resistência a Medicamentos , Escherichia coli/genética , Metiltransferases/biossíntese , Proteínas de Bactérias , Histidina , Metiltransferases/isolamento & purificação , Micromonospora/enzimologia
12.
Res Microbiol ; 159(9-10): 658-62, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18930134

RESUMO

The aminoglycoside resistance genes sgm from Micromonospora zionensis and kgmB from Streptomyces tenebrarius were cloned into a yeast expression vector to test whether the encoded prokaryotic methylases can modify the 18S rRNA A-site and thus confer resistance to G-418. Despite the detectable presence of mRNAs in yeast cells, neither G-418-resistant yeast transformants nor positive western blot signals were obtained. Neither methylase was capable of methylating 40S subunits despite very high conservation of the antibiotic rRNA binding sites. However, the results provide novel insight into the action of Sgm by showing that it methylates the same site as KgmB, i.e. G1405 in 16S rRNA.


Assuntos
Aminoglicosídeos/farmacologia , Farmacorresistência Bacteriana/genética , Gentamicinas/farmacologia , Metiltransferases/metabolismo , RNA Bacteriano/metabolismo , RNA Ribossômico 16S/metabolismo , Sítios de Ligação , Clonagem Molecular , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Escherichia coli/genética , Metiltransferases/genética , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/química , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribossomos/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
13.
Biochem Biophys Res Commun ; 344(4): 1346-51, 2006 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-16650826

RESUMO

Using a hard X-ray microprobe, we showed recently that in unstimulated peritoneal macrophages from C57BL/6 mice, the phagosome of pathogenic mycobacteria (Mycobacterium tuberculosis and Mycobacterium avium) can accumulate iron. We expanded our studies to the M. avium infection of peritoneal macrophages of Balb/c mice that show a similar degree of M. tuberculosis and M. avium-related chronic disease, but a higher susceptibility towards other intracellular pathogens such as Listeria monocytogenes, Leishmania major, or Brucella abortus as compared to C57BL/6 mice. Similar to C57BL/6 macrophages, the iron concentration in Balb/c macrophages increased significantly after 24 h of infection. A significant increase of the chlorine and potassium concentrations was observed in the Balb/c phagosomes between 1 and 24 h, in contrast with macrophages from C57BL/6 mice. The absolute elemental concentrations of calcium and zinc were higher in the mycobacterial phagosomes of Balb/c mice. We hypothesize that a potassium channel is abundant in the phagosome in macrophages that may be related to microbiocidal killing, similar to the requirement of potassium channels for microbiocidal function in neutrophils.


Assuntos
Macrófagos Peritoneais/microbiologia , Mycobacterium avium/metabolismo , Fagossomos/química , Tuberculose/imunologia , Animais , Cálcio/análise , Cálcio/metabolismo , Cloro/análise , Cloro/metabolismo , Ferro/análise , Ferro/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fagossomos/metabolismo , Potássio/análise , Potássio/metabolismo , Zinco/análise , Zinco/metabolismo
14.
Microbiology (Reading) ; 151(Pt 1): 323-332, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15632449

RESUMO

Pathogenic mycobacteria survive within phagosomes which are thought to represent a nutrient-restricted environment. Divalent cation transporters of the Nramp family in phagosomes and mycobacteria (Mramp) may compete for metals that are crucial for bacterial survival. The elemental concentrations in phagosomes of macrophages infected with wild-type Mycobacterium tuberculosis (M. tuberculosis strain H37Rv) and a M. tuberculosis Mramp knockout mutant (Mramp-KO), derived from a clinical isolate isogenic to the strain MT103, were compared. Time points of 1 and 24 h after infection of mouse peritoneal macrophages (bcg(S)) were compared in both cases. Increased concentrations of P, Ni and Zn and reduced Cl concentration in Mramp-KO after 1 h of infection were observed, compared to M. tuberculosis vacuoles. After 24 h of infection, significant differences in the P, Cl and Zn concentrations were still present. The Mramp-KO phagosome showed a significant increase of P, Ca, Mn, Fe and Zn concentrations between 1 and 24 h after infection, while the concentrations of K and Ni decreased. In the M. tuberculosis vacuole, the Fe concentration showed a similar increase, while the Cl concentration decreased. The fact that the concentration of several divalent cations increased in the Mramp-KO strain suggests that Mramp may have no impact on the import of these divalent cations into the mycobacterium, but may function as a cation efflux pump. The concordant increase of Fe concentrations within M. tuberculosis, as well as within the Mramp-KO vacuoles, implies that Mramp, in contrast to siderophores, might not be important for the attraction of Fe and its retention in phagosomes of unstimulated macrophages.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Cátions Bivalentes/metabolismo , Macrófagos Peritoneais/microbiologia , Mycobacterium tuberculosis/metabolismo , Fagossomos/metabolismo , Animais , Proteínas de Transporte de Cátions/genética , Deleção de Genes , Humanos , Transporte de Íons , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/genética
15.
J Clin Virol ; 26(3): 339-46, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12637083

RESUMO

BACKGROUND: Influenza (Flu) and respiratory syncytial virus (RSV) are important viral pathogens that cause lower respiratory tract infections and severe exacerbations of asthma. Molecular biological techniques are permitting a rapid and accurate diagnosis of infections caused by respiratory pathogens, and have typically been applied to upper respiratory samples. Sputum induction provides an opportunity to directly sample secretions from the lower respiratory tract. OBJECTIVES/STUDY DESIGN: To determine the role of induced sputum reverse-transcription polymerase chain reaction (RT-PCR) in the detection of respiratory pathogens and compare this with detection using serology and immunofluorescent antigen (IFA) testing, we recruited 49 adults from emergency room with exacerbations of asthma. After a medical assessment and spirometry, sputum was induced using ultrasonically nebulised normal saline. Sputum was assayed using IFA and RT-PCR for flu and RSV. Flu serology was performed acutely and at convalescence, 4-5 weeks later. RESULTS: Influenza A or B was detected in 24% of the samples by PCR, significantly more than the nine cases detected using serology and the one case using IFA (P<0.05). RSV was detected in 37% of samples using PCR and 20% by IFA (P<0.05). CONCLUSION: The combination of induced sputum and RT-PCR provides a useful means of detecting respiratory infection. The technique is safe in both adults and children, and RT-PCR is more sensitive than conventional serology and IFA. The improved sensitivity of induced sputum RT-PCR also permits a more rapid diagnosis and the opportunity of early administration of effective treatments.


Assuntos
Asma/complicações , Testes de Fixação de Complemento , Técnica Indireta de Fluorescência para Anticorpo , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza B/isolamento & purificação , Influenza Humana/diagnóstico , Infecções por Vírus Respiratório Sincicial/diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Escarro/virologia , Doença Aguda , Adolescente , Adulto , Idoso , Anticorpos Antivirais/sangue , Antígenos Virais/análise , Sistemas Computacionais , Convalescença , Emergências , Feminino , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/imunologia , Vírus da Influenza B/genética , Vírus da Influenza B/imunologia , Influenza Humana/complicações , Influenza Humana/virologia , Masculino , Pessoa de Meia-Idade , Infecções por Vírus Respiratório Sincicial/complicações , Infecções por Vírus Respiratório Sincicial/virologia , Sensibilidade e Especificidade , Espirometria , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA