Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 11(2)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35204156

RESUMO

FNR and ferredoxin constitute a redox cascade, which provides reducing power in the plastid of malaria parasites. Recently, mutation of ferredoxin (D97Y) was reported to be strongly related to the parasite's resistance to the front-line antimalarial drug artemisinin. In order to gain insight into the mechanism for the resistance, we studied the effect of dihydroartemisinin (DHA), the active compound of artemisinin, on the redox cascade of NADPH/FNR/ferredoxin in in vitro reconstituted systems. DHA partially inhibited the diaphorase activity of FNR by decreasing the affinity of FNR for NADPH. The activity of the electron transfer from FNR to wild-type or D97Y mutant ferredoxin was not significantly affected by DHA. An in silico docking analysis indicated possible binding of DHA molecule in the binding cavity of 2'5'ADP, a competitive inhibitor for NADPH, on FNR. We previously showed that the D97Y mutant of ferredoxin binds to FNR more strongly than wild-type ferredoxin, and ferredoxin and FNR are generally known to be involved in the oxidative stress response. Thus, these results suggest that ferredoxin is not a direct target of artemisinin, but its mutation may be involved in the protective response against the oxidative stress caused by artemisinin.

2.
J Biochem ; 170(4): 521-529, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34415329

RESUMO

Mutation of Asp97Tyr in the C-terminal region of ferredoxin (PfFd) in the apicoplast of malaria parasites was recently reported to be strongly related to the parasite's resistance to the frontline antimalarial drug, artemisinin. We previously showed that the aromatic amino acid in the C-terminal region of PfFd is important for the interaction with its electron transfer partner, Fd-NADP+ reductase (PfFNR). Here, the importance of the aromatic-aromatic interaction between PfFd and PfFNR was shown using the kinetic analysis of the electron transfer reaction of site-directed mutants of PfFNR with PfFd. Mutation of Asp97Tyr of PfFd was further shown to increase the affinity with PfFNR by the measurements of the dissociation constant (Kd) using tryptophan fluorescence titration and the Michaelis constant (Km) in the kinetic analysis with PfFNRs. Diaphorase activity of PfFNR was inhibited by D97Y PfFd at lower concentration as compared to wild-type PfFd. Ascorbate radical scavenging activity of PfFd and electron transfer activity to a heterogeneous Fd-dependent enzyme was lower with D97Y PfFd than that of wild-type PfFd. These results showed that D97Y mutant of PfFd binds to PfFNR tighter than wild-type PfFd, and thus may suppress the function of PfFNR which could be associated with the action of artemisinin.


Assuntos
Artemisininas/farmacologia , Ferredoxina-NADP Redutase/metabolismo , Ferredoxinas/metabolismo , Malária/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/metabolismo , Animais , Antimaláricos/farmacologia , Ácido Aspártico/genética , Transporte de Elétrons , Humanos , Cinética , Malária/tratamento farmacológico , Mutação , Parasitos/metabolismo , Plasmodium falciparum/enzimologia , Tirosina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA