Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Cancer Res Commun ; 4(5): 1268-1281, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38619287

RESUMO

The MUC1-C protein is aberrantly expressed in adenocarcinomas of epithelial barrier tissues and contributes to their progression. Less is known about involvement of MUC1-C in the pathogenesis of squamous cell carcinomas (SCC). Here, we report that the MUC1 gene is upregulated in advanced head and neck SCCs (HNSCC). Studies of HNSCC cell lines demonstrate that the MUC1-C subunit regulates expression of (i) RIG-I and MDA5 pattern recognition receptors, (ii) STAT1 and IFN regulatory factors, and (iii) downstream IFN-stimulated genes. MUC1-C integrates chronic activation of the STAT1 inflammatory pathway with induction of the ∆Np63 and SOX2 genes that are aberrantly expressed in HNSCCs. In extending those dependencies, we demonstrate that MUC1-C is necessary for NOTCH3 expression, self-renewal capacity, and tumorigenicity. The findings that MUC1 associates with ∆Np63, SOX2 and NOTCH3 expression by single-cell RNA sequencing analysis further indicate that MUC1-C drives the HNSCC stem cell state and is a target for suppressing HNSCC progression. SIGNIFICANCE: This work reports a previously unrecognized role for MUC1-C in driving STAT1-mediated chronic inflammation with the progression of HNSCC and identifies MUC1-C as a druggable target for advanced HNSCC treatment.


Assuntos
Progressão da Doença , Neoplasias de Cabeça e Pescoço , Mucina-1 , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Mucina-1/genética , Mucina-1/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/metabolismo , Linhagem Celular Tumoral , Camundongos , Animais , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética , Receptor Notch3/genética , Receptor Notch3/metabolismo
2.
Cell Death Discov ; 10(1): 9, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182558

RESUMO

The oncogenic MUC1-C transmembrane protein is a critical effector of the cancer stem cell (CSC) state. Addiction to MUC1-C for self-renewal in the progression of human cancers has emphasized the need for development of anti-MUC1-C agents. However, there are presently no approved small molecules for targeting MUC1-C-dependent CSCs. In screening for small molecules, we identified salinomycin (SAL), an inducer of ferroptosis, as a potent inhibitor of MUC1-C signaling. We demonstrate that SAL suppresses MUC1-C expression by disrupting a NF-κB/MUC1-C auto-inductive circuit that is necessary for ferroptosis resistance. Our results show that SAL-induced MUC1-C suppression downregulates a MUC1-C→MYC pathway that activates genes encoding (i) glutathione-disulfide reductase (GSR), and (ii) the LDL receptor related protein 8 (LRP8), which inhibit ferroptosis by generating GSH and regulating selenium levels, respectively. GSR and LRP8 contribute to the function of glutathione peroxidase 4 (GPX4), an essential negative regulator of ferroptotic cell death. We demonstrate that targeting MUC1-C genetically or with the GO-203 peptide inhibitor suppresses GPX4 expression and GPX activity in association with the induction of ferroptosis. Studies of CSCs enriched by serial passage as tumorspheres further demonstrate that the effects of SAL are mediated by downregulation of MUC1-C and thereby overcoming resistance to ferroptosis. As confirmation of these results, rescue of MUC1-C downregulation with the MUC1-C cytoplasmic domain (i) reversed the suppression of GSR, LRP8 and GPX4 expression, and (ii) attenuated the induction of ferroptosis. These findings identify SAL as a unique small molecule inhibitor of MUC1-C signaling and demonstrate that MUC1-C is an important effector of resistance to ferroptosis.

3.
J Thorac Oncol ; 19(3): 434-450, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37924972

RESUMO

INTRODUCTION: Osimertinib is an irreversible EGFR tyrosine kinase inhibitor approved for the first-line treatment of patients with metastatic NSCLC harboring EGFR exon 19 deletions or L858R mutations. Patients treated with osimertinib invariably develop acquired resistance by mechanisms involving additional EGFR mutations, MET amplification, and other pathways. There is no known involvement of the oncogenic MUC1-C protein in acquired osimertinib resistance. METHODS: H1975/EGFR (L858R/T790M) and patient-derived NSCLC cells with acquired osimertinib resistance were investigated for MUC1-C dependence in studies of EGFR pathway activation, clonogenicity, and self-renewal capacity. RESULTS: We reveal that MUC1-C is up-regulated in H1975 osimertinib drug-tolerant persister cells and is necessary for activation of the EGFR pathway. H1975 cells selected for stable osimertinib resistance (H1975-OR) and MGH700-2D cells isolated from a patient with acquired osimertinib resistance are found to be dependent on MUC1-C for induction of (1) phospho (p)-EGFR, p-ERK, and p-AKT, (2) EMT, and (3) the resistant phenotype. We report that MUC1-C is also required for p-EGFR, p-ERK, and p-AKT activation and self-renewal capacity in acquired osimertinib-resistant (1) MET-amplified MGH170-1D #2 cells and (2) MGH121 Res#2/EGFR (T790M/C797S) cells. Importantly, targeting MUC1-C in these diverse models reverses osimertinib resistance. In support of these results, high MUC1 mRNA and MUC1-C protein expression is associated with a poor prognosis for patients with EGFR-mutant NSCLCs. CONCLUSIONS: Our findings reveal that MUC1-C is a common effector of osimertinib resistance and is a potential target for the treatment of osimertinib-resistant NSCLCs.


Assuntos
Acrilamidas , Carcinoma Pulmonar de Células não Pequenas , Indóis , Neoplasias Pulmonares , Pirimidinas , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Receptores ErbB/metabolismo , Mutação , Proteínas Proto-Oncogênicas c-akt/genética , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Compostos de Anilina/farmacologia , Mucina-1/genética
4.
iScience ; 26(11): 108168, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37915591

RESUMO

Activation of the MUC1-C protein promotes lineage plasticity, epigenetic reprogramming, and the cancer stem cell (CSC) state. The present studies performed on enriched populations of triple-negative breast cancer (TNBC) CSCs demonstrate that MUC1-C is essential for integrating activation of glycolytic pathway genes with self-renewal and tumorigenicity. MUC1-C further integrates the glycolytic pathway with suppression of mitochondrial DNA (mtDNA) genes encoding components of mitochondrial Complexes I-V. The repression of mtDNA genes is explained by MUC1-C-mediated (i) downregulation of the mitochondrial transcription factor A (TFAM) required for mtDNA transcription and (ii) induction of the mitochondrial transcription termination factor 3 (mTERF3). In support of pathogenesis that suppresses mitochondrial ROS production, targeting MUC1-C increases (i) mtDNA gene transcription, (ii) superoxide levels, and (iii) loss of self-renewal capacity. These findings and scRNA-seq analysis of CSC subpopulations indicate that MUC1-C regulates self-renewal and redox balance by integrating activation of glycolysis with suppression of oxidative phosphorylation.

5.
Commun Biol ; 6(1): 1030, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821650

RESUMO

Chronic inflammation promotes epigenetic reprogramming in cancer progression by pathways that remain unclear. The oncogenic MUC1-C protein is activated by the inflammatory NF-κB pathway in cancer cells. There is no known involvement of MUC1-C in regulation of the COMPASS family of H3K4 methyltransferases. We find that MUC1-C regulates (i) bulk H3K4 methylation levels, and (ii) the COMPASS SET1A/SETD1A and WDR5 genes by an NF-κB-mediated mechanism. The importance of MUC1-C in regulating the SET1A COMPASS complex is supported by the demonstration that MUC1-C and WDR5 drive expression of FOS, ATF3 and other AP-1 family members. In a feedforward loop, MUC1-C, WDR5 and AP-1 contribute to activation of genes encoding TRAF1, RELB and other effectors in the chronic NF-κB inflammatory response. We also show that MUC1-C, NF-κB, WDR5 and AP-1 are necessary for expression of the (i) KLF4 master regulator of the pluripotency network and (ii) NOTCH1 effector of stemness. In this way, MUC1-C/NF-κB complexes recruit SET1A/WDR5 and AP-1 to enhancer-like signatures in the KLF4 and NOTCH1 genes with increases in H3K4me3 levels, chromatin accessibility and transcription. These findings indicate that MUC1-C regulates the SET1A COMPASS complex and the induction of genes that integrate NF-κB-mediated chronic inflammation with cancer progression.


Assuntos
NF-kappa B , Neoplasias , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Fator de Transcrição AP-1/metabolismo , Neoplasias/genética , Processos Neoplásicos , Inflamação/genética , Epigênese Genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mucina-1/genética , Mucina-1/metabolismo
6.
iScience ; 26(4): 106478, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37091240

RESUMO

Somatic cell reprogramming using the microRNAs miR-200c, miR-302s, and miR-369s leads to increased expression of cyclin-dependent kinase inhibitors in human colorectal cancer (CRC) cells and suppressed tumor growth. Here, we investigated whether these microRNAs inhibit colorectal tumorigenesis in CPC;Apc mice, which are prone to colon and rectal polyps. Repeated administration of microRNAs inhibited polyp formation. Microarray analysis indicated that c-MAF, which reportedly shows oncogene-like behavior in multiple myeloma and T cell lymphoma, decreased in tumor samples but increased in microRNA-treated normal mucosa. Immunohistochemistry identified downregulation of c-MAF as an early tumorigenesis event in CRC, with low c-MAF expression associated with poor prognosis. Of note, c-MAF expression and p53 protein levels were inversely correlated in CRC samples. c-MAF knockout led to enhanced tumor formation in azoxymethane/dextran sodium sulfate-treated mice, with activation of cancer-promoting genes. c-MAF may play a tumor-suppressive role in CRC development.

7.
Cancer Lett ; 559: 216116, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36878307

RESUMO

Colorectal cancers (CRCs) harboring the BRAF(V600E) mutation are associated with aggressive disease and resistance to BRAF inhibitors by feedback activation of the receptor tyrosine kinase (RTK)→RAS→MAPK pathway. The oncogenic MUC1-C protein promotes progression of colitis to CRC; whereas there is no known involvement of MUC1-C in BRAF(V600E) CRCs. The present work demonstrates that MUC1 expression is significantly upregulated in BRAF(V600E) vs wild-type CRCs. We show that BRAF(V600E) CRC cells are dependent on MUC1-C for proliferation and BRAF inhibitor (BRAFi) resistance. Mechanistically, MUC1-C integrates induction of MYC in driving cell cycle progression with activation of the SHP2 phosphotyrosine phosphatase, which enhances RTK-mediated RAS→ERK signaling. We demonstrate that targeting MUC1-C genetically and pharmacologically suppresses (i) activation of MYC, (ii) induction of the NOTCH1 stemness factor, and (iii) the capacity for self-renewal. We also show that MUC1-C associates with SHP2 and is required for SHP2 activation in driving BRAFi-induced feedback of ERK signaling. In this way, targeting MUC1-C in BRAFi-resistant BRAF(V600E) CRC tumors inhibits growth and sensitizes to BRAF inhibition. These findings demonstrate that MUC1-C is a target for the treatment of BRAF(V600E) CRCs and for reversing their resistance to BRAF inhibitors by suppressing the feedback MAPK pathway.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas B-raf , Humanos , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Mucina-1/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais
8.
J Immunother Cancer ; 11(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36754452

RESUMO

BACKGROUND: The MUC1-C protein evolved in mammals to protect barrier tissues from loss of homeostasis; however, MUC1-C promotes oncogenesis in association with chronic inflammation. Aberrant expression of MUC1-C in cancers has been linked to depletion and dysfunction of T cells in the tumor microenvironment. In contrast, there is no known involvement of MUC1-C in the regulation of natural killer (NK) cell function. METHODS: Targeting MUC1-C genetically and pharmacologically in cancer cells was performed to assess effects on intracellular and cell surface expression of the MHC class I chain-related polypeptide A (MICA) and MICB ligands. The MICA/B promoters were analyzed for H3K27 and DNA methylation. Shedding of MICA/B was determined by ELISA. MUC1-C interactions with ERp5 and RAB27A were assessed by coimmunoprecipitation and direct binding studies. Exosomes were isolated for analysis of secretion. Purified NK cells were assayed for killing of cancer cell targets. RESULTS: Our studies demonstrate that MUC1-C represses expression of the MICA and MICB ligands that activate the NK group 2D receptor. We show that the inflammatory MUC1-C→NF-κB pathway drives enhancer of zeste homolog 2-mediated and DNMT-mediated methylation of the MICA and MICB promoter regions. Targeting MUC1-C genetically and pharmacologically with the GO-203 inhibitor induced intracellular and cell surface MICA/B expression but not MICA/B cleavage. Mechanistically, MUC1-C regulates the ERp5 thiol oxidoreductase that is necessary for MICA/B protease digestion and shedding. In addition, MUC1-C interacts with the RAB27A protein, which is required for exosome formation and secretion. As a result, targeting MUC1-C markedly inhibited secretion of exosomes expressing MICA/B. In concert with these results, we show that targeting MUC1-C promotes NK cell-mediated killing. CONCLUSIONS: These findings uncover pleotropic mechanisms by which MUC1-C confers evasion of cancer cells to NK cell recognition and destruction.


Assuntos
Exossomos , Mucina-1 , Neoplasias , Humanos , Exossomos/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Células Matadoras Naturais , Ligantes , Mucina-1/genética , Mucina-1/metabolismo , Neoplasias/patologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Microambiente Tumoral
9.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835361

RESUMO

Here we aimed to establish a simple detection method for detecting circulating tumor cells (CTCs) in the blood sample of colorectal cancer (CRC) patients using poly(2-methoxyethyl acrylate) (PMEA)-coated plates. Adhesion test and spike test using CRC cell lines assured efficacy of PMEA coating. A total of 41 patients with pathological stage II-IV CRC were enrolled between January 2018 and September 2022. Blood samples were concentrated by centrifugation by the OncoQuick tube, and then incubated overnight on PMEA-coated chamber slides. The next day, cell culture and immunocytochemistry with anti-EpCAM antibody were performed. Adhesion tests revealed good attachment of CRCs to PMEA-coated plates. Spike tests indicated that ~75% of CRCs from a 10-mL blood sample were recovered on the slides. By cytological examination, CTCs were identified in 18/41 CRC cases (43.9%). In cell cultures, spheroid-like structures or tumor-cell clusters were found in 18/33 tested cases (54.5%). Overall, CTCs and/or growing circulating tumor cells were found in 23/41 CRC cases (56.0%). History of chemotherapy or radiation was significantly negatively correlated with CTC detection (p = 0.02). In summary, we successfully captured CTCs from CRC patients using the unique biomaterial PMEA. Cultured tumor cells will provide important and timely information regarding the molecular basis of CTCs.


Assuntos
Neoplasias Colorretais , Células Neoplásicas Circulantes , Humanos , Acrilatos/química , Neoplasias Colorretais/patologia , Células Neoplásicas Circulantes/patologia , Polímeros/química , Células Tumorais Cultivadas , Técnicas de Cultura de Células
10.
Ann Gastroenterol Surg ; 7(1): 81-90, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36643362

RESUMO

Purpose: Addition of perioperative multi-agent chemotherapy to the treatment strategy for locally advanced rectal cancer (LARC) may be a promising option. We conducted a phase II study to evaluate the safety and efficacy of capecitabine combined with oxaliplatin and irinotecan (XELOXIRI) as triplet neoadjuvant chemotherapy in patients with LARC. Methods: Patients received neoadjuvant irinotecan and oxaliplatin and capecitabine and then underwent total mesorectal excision. The primary study endpoint was the pathological complete response (pCR) rate. Results: Between June 2013 and December 2016, 55 patients were enrolled in the study. Forty-two (77.8%) of 54 completed the study protocol. The pCR rate was 7.7% (95% CI 3.0% to 18.2%). The 3-year local recurrence rate was 3.9%, the 3-year disease-free survival (DFS) rate was 77.3, and the 3-year overall survival rate was 96.0%. Conclusion: XELOXIRI neoadjuvant chemotherapy appears to be feasible and efficacious for patients with LARC. Although neoadjuvant XELOXIRI alone did not yield our expected pCR rate, the local recurrence rate, 3-year DFS, and measures of safety met current standards.

11.
Mol Cancer Res ; 21(3): 274-289, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36445328

RESUMO

The polybromo-1 (PBRM1) chromatin-targeting subunit of the SWI/SNF PBAF chromatin remodeling complex drives DNA damage resistance and immune evasion in certain cancer cells through mechanisms that remain unclear. STAT1 and IRF1 are essential effectors of type I and II IFN pathways. Here, we report that MUC1-C is necessary for PBRM1 expression and that it forms a nuclear complex with PBRM1 in triple-negative breast cancer (TNBC) cells. Analysis of global transcriptional (RNA-seq) and chromatin accessibility (ATAC-seq) profiles further demonstrated that MUC1-C and PBRM1 drive STAT1 and IRF1 expression by increasing chromatin accessibility of promoter-like signatures (PLS) on their respective genes. We also found that MUC1-C, PBRM1, and IRF1 increase the expression and chromatin accessibility on PLSs of the (i) type II IFN pathway IDO1 and WARS genes and (ii) type I IFN pathway RIG-I, MDA5, and ISG15 genes that collectively contribute to DNA damage resistance and immune evasion. In support of these results, targeting MUC1-C in wild-type BRCA TNBC cells enhanced carboplatin-induced DNA damage and the loss of self-renewal capacity. In addition, MUC1-C was necessary for DNA damage resistance, self-renewal, and tumorigenicity in olaparib-resistant BRCA1-mutant TNBC cells. Analysis of TNBC tumors corroborated that (i) MUC1 and PBRM1 are associated with decreased responsiveness to chemotherapy and (ii) MUC1-C expression is associated with the depletion of tumor-infiltrating lymphocytes (TIL). These findings demonstrate that MUC1-C activates PBRM1, and thereby chromatin remodeling of IFN-stimulated genes that promote chronic inflammation, DNA damage resistance, and immune evasion. IMPLICATIONS: MUC1-C is necessary for PBRM1-driven chromatin remodeling in chronic activation of IFN pathway genes that promote DNA damage resistance and immunosuppression.


Assuntos
Mucina-1 , Fatores de Transcrição , Neoplasias de Mama Triplo Negativas , Humanos , Cromatina , Dano ao DNA , Proteínas de Ligação a DNA/genética , Terapia de Imunossupressão , Interferons/genética , Mucina-1/genética , Mucina-1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
12.
Gan To Kagaku Ryoho ; 50(13): 1828-1830, 2023 Dec.
Artigo em Japonês | MEDLINE | ID: mdl-38303221

RESUMO

A metastatic tumor of the umbilicus is called"Sister Mary Joseph's nodule", and patients with this tumor show a poor prognosis. Sister Mary Joseph's nodule is a rare occurrence, and there are few case reports. We report a case of cecal cancer first presented with the metastatic tumor in the umbilicus. A 90-year-old woman, complained umbilical induration and foul-smelling discharge, had been treated as omphalitis for 2 months. Because her symptom didn't improve, biopsy of the umbilical tumor was performed, and the findings revealed an adenocarcinoma. She was referred to our hospital. Abdominal CT showed wall thickening in the cecum, and multiple liver metastases. Therefore, we performed lower gastrointestinal endoscopy, which revealed a cecal tumor. We performed biopsy of the tumor and the findings were consistent with adenocarcinoma. Based on these results, we diagnosed the umbilical tumor as a metastasis from the colorectal cancer. Umbilical resection and ileocecal resection were performed, and multiple peritoneal metastases was detected. Post operative course was uneventful, she died 11 months after surgery. Umbilical metastases may worsen the patient's quality of life; thus, the local resection of umbilicus was recommended positively.


Assuntos
Adenocarcinoma , Neoplasias do Ceco , Nódulo da Irmã Maria José , Humanos , Feminino , Idoso de 80 Anos ou mais , Nódulo da Irmã Maria José/cirurgia , Nódulo da Irmã Maria José/secundário , Qualidade de Vida , Neoplasias do Ceco/cirurgia , Neoplasias do Ceco/patologia , Umbigo/cirurgia , Umbigo/patologia , Adenocarcinoma/diagnóstico
13.
Cancers (Basel) ; 14(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35681561

RESUMO

The MUC1-C apical transmembrane protein is activated in the acute response of epithelial cells to inflammation. However, chronic MUC1-C activation promotes cancer progression, emphasizing the importance of MUC1-C as a target for treatment. We report here that MUC1-C is necessary for intrinsic expression of the RIG-I, MDA5 and cGAS cytosolic nucleotide pattern recognition receptors (PRRs) and the cGAS-stimulator of IFN genes (STING) in triple-negative breast cancer (TNBC) cells. Consistent with inducing the PRR/STING axis, MUC1-C drives chronic IFN-ß production and activation of the type I interferon (IFN) pathway. MUC1-C thereby induces the IFN-related DNA damage resistance gene signature (IRDS), which includes ISG15, in linking chronic inflammation with DNA damage resistance. Targeting MUC1-C in TNBC cells treated with carboplatin or the PARP inhibitor olaparib further demonstrated that MUC1-C is necessary for expression of PRRs, STING and ISG15 and for intrinsic DNA damage resistance. Of translational relevance, MUC1 significantly associates with upregulation of STING and ISG15 in TNBC tumors and is a target for treatment with CAR T cells, antibody-drug conjugates (ADCs) and direct inhibitors that are under preclinical and clinical development.

14.
Oncogene ; 41(27): 3511-3523, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35688945

RESUMO

Merkel cell carcinoma (MCC) is an aggressive malignancy with neuroendocrine (NE) features, limited treatment options, and a lack of druggable targets. There is no reported involvement of the MUC1-C oncogenic protein in MCC progression. We show here that MUC1-C is broadly expressed in MCCs and at higher levels in Merkel cell polyomavirus (MCPyV)-positive (MCCP) relative to MCPyV-negative (MCCN) tumors. Our results further demonstrate that MUC1-C is expressed in MCCP, as well as MCCN, cell lines and regulates common sets of signaling pathways related to RNA synthesis, processing, and transport in both subtypes. Mechanistically, MUC1-C (i) interacts with MYCL, which drives MCC progression, (ii) is necessary for expression of the OCT4, SOX2, KLF4, MYC, and NANOG pluripotency factors, and (iii) induces the NEUROD1, BRN2 and ATOH1 NE lineage dictating transcription factors. We show that MUC1-C is also necessary for MCCP and MCCN cell survival by suppressing DNA replication stress, the p53 pathway, and apoptosis. In concert with these results, targeting MUC1-C genetically and pharmacologically inhibits MCC self-renewal capacity and tumorigenicity. These findings demonstrate that MCCP and MCCN cells are addicted to MUC1-C and identify MUC1-C as a potential target for MCC treatment.


Assuntos
Carcinoma de Célula de Merkel , Poliomavírus das Células de Merkel , Mucina-1 , Neoplasias Cutâneas , Carcinoma de Célula de Merkel/tratamento farmacológico , Carcinoma de Célula de Merkel/genética , Carcinoma de Célula de Merkel/virologia , Humanos , Mucina-1/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/virologia
15.
Mol Cancer Res ; 20(9): 1379-1390, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35612556

RESUMO

Small cell lung cancer (SCLC) is a recalcitrant malignancy defined by subtypes on the basis of differential expression of the ASCL1, NEUROD1, and POU2F3 transcription factors. The MUC1-C protein is activated in pulmonary epithelial cells by exposure to environmental carcinogens and promotes oncogenesis; however, there is no known association between MUC1-C and SCLC. We report that MUC1-C is expressed in classic neuroendocrine (NE) SCLC-A, variant NE SCLC-N and non-NE SCLC-P cells and activates the MYC pathway in these subtypes. In SCLC cells characterized by NE differentiation and DNA replication stress, we show that MUC1-C activates the MYC pathway in association with induction of E2F target genes and dysregulation of mitotic progression. Our studies further demonstrate that the MUC1-C→MYC pathway is necessary for induction of (i) NOTCH2, a marker of pulmonary NE stem cells that are the proposed cell of SCLC origin, and (ii) ASCL1 and NEUROD1. We also show that the MUC1-C→MYC→NOTCH2 network is necessary for self-renewal capacity and tumorigenicity of NE and non-NE SCLC cells. Analyses of datasets from SCLC tumors confirmed that MUC1 expression in single SCLC cells significantly associates with activation of the MYC pathway. These findings demonstrate that SCLC cells are addicted to MUC1-C and identify a potential new target for SCLC treatment. IMPLICATIONS: This work uncovers addiction of SCLC cells to MUC1-C, which is a druggable target that could provide new opportunities for advancing SCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Células Neuroendócrinas , Carcinoma de Pequenas Células do Pulmão , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Mucina-1/genética , Mucina-1/metabolismo , Células Neuroendócrinas/patologia , Proteínas Oncogênicas/genética , Carcinoma de Pequenas Células do Pulmão/genética
16.
Oncol Lett ; 23(5): 167, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35414828

RESUMO

Postoperative carcinoembryonic antigen (post-CEA) has recently been reported to be a reliable prognostic factor for colon cancer. However, most clinicians decide whether or not to conduct adjuvant chemotherapy (AC) for stage II colon cancer according to major guidelines, which do not include post-CEA in their high-risk criteria. The present study aimed to assess post-CEA in stage II colon cancer for which the significance of AC is unknown. The present study analyzed 199 consecutive patients with stage II colon cancer who underwent curative surgery between January 2007 and December 2016. The CEA value was considered high when it was ≥5.0 ng/ml. The prognostic value of high post-CEA values was assessed. Overall, 19 patients exhibited high post-CEA levels. Kaplan-Meier survival curve analysis demonstrated that patients with high post-CEA levels had significantly worse relapse-free survival (RFS) and overall survival (OS) than those with normal post-CEA [RFS, 63.5 (high post-CEA) vs. 88.0% (normal post-CEA), P=0.003; OS, 76.5 (high post-CEA) vs. 96.8% (normal post-CEA), P<0.001]. Multivariate analysis demonstrated that high post-CEA remained a significant independent risk factor for worse RFS [hazard ratio (HR), 3.98; P=0.006]. The same was also demonstrated for patients without AC (HR, 5.43; P=0.008). To the best of our knowledge, the present study was the first to demonstrate that high post-CEA levels may be an indicator of high-risk stage II colon cancer, even for patients without AC. These results highlight the need for a multicenter prospective study.

17.
Oncoimmunology ; 11(1): 2029298, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35127252

RESUMO

The oncogenic MUC1-C protein drives dedifferentiation of castrate resistant prostate cancer (CRPC) cells in association with chromatin remodeling. The present work demonstrates that MUC1-C is necessary for expression of IFNGR1 and activation of the type II interferon-gamma (IFN-γ) pathway. We show that MUC1-C→ARID1A/BAF signaling induces IFNGR1 transcription and that MUC1-C-induced activation of the NuRD complex suppresses FBXW7 in stabilizing the IFNGR1 protein. MUC1-C and NuRD were also necessary for expression of the downstream STAT1 and IRF1 transcription factors. We further demonstrate that MUC1-C and PBRM1/PBAF are necessary for IRF1-induced expression of (i) IDO1, WARS and PTGES, which metabolically suppress the immune tumor microenvironment (TME), and (ii) the ISG15 and SERPINB9 inhibitors of T cell function. Of translational relevance, we show that MUC1 associates with expression of IFNGR1, STAT1 and IRF1, as well as the downstream IDO1, WARS, PTGES, ISG15 and SERPINB9 immunosuppressive effectors in CRPC tumors. Analyses of scRNA-seq data further demonstrate that MUC1 correlates with cancer stem cell (CSC) and IFN gene signatures across CRPC cells. Consistent with these results, MUC1 associates with immune cell-depleted "cold" CRPC TMEs. These findings demonstrate that MUC1-C integrates chronic activation of the type II IFN-γ pathway and induction of chromatin remodeling complexes in linking the CSC state with immune evasion.


Assuntos
Montagem e Desmontagem da Cromatina , Interferon gama , Mucina-1 , Neoplasias de Próstata Resistentes à Castração , Montagem e Desmontagem da Cromatina/imunologia , Humanos , Terapia de Imunossupressão , Masculino , Mucina-1/imunologia , Neoplasias de Próstata Resistentes à Castração/imunologia , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores de Interferon/imunologia , Transdução de Sinais/imunologia , Microambiente Tumoral , Receptor de Interferon gama
18.
Mol Cancer Res ; 20(4): 556-567, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35022313

RESUMO

The oncogenic MUC1-C protein promotes dedifferentiation of castrate-resistant prostate cancer (CRPC) and triple-negative breast cancer (TNBC) cells. Chromatin remodeling is critical for the cancer stem cell (CSC) state; however, there is no definitive evidence that MUC1-C regulates chromatin accessibility and thereby expression of stemness-associated genes. We demonstrate that MUC1-C drives global changes in chromatin architecture in the dedifferentiation of CRPC and TNBC cells. Our results show that MUC1-C induces differentially accessible regions (DAR) across their genomes, which are significantly associated with differentially expressed genes (DEG). Motif and cistrome analysis further demonstrated MUC1-C-induced DARs align with genes regulated by the JUN/AP-1 family of transcription factors. MUC1-C activates the BAF chromatin remodeling complex, which is recruited by JUN in enhancer selection. In studies of the NOTCH1 gene, which is required for CRPC and TNBC cell self-renewal, we demonstrate that MUC1-C is necessary for (i) occupancy of JUN and ARID1A/BAF, (ii) increases in H3K27ac and H3K4me3 signals, and (iii) opening of chromatin accessibility on a proximal enhancer-like signature. Studies of the EGR1 and LY6E stemness-associated genes further demonstrate that MUC1-C-induced JUN/ARID1A complexes regulate chromatin accessibility on proximal and distal enhancer-like signatures. These findings uncover a role for MUC1-C in chromatin remodeling that is mediated at least in part by JUN/AP-1 and ARID1A/BAF in association with driving the CSC state. IMPLICATIONS: These findings show that MUC1-C, which is necessary for the CRPC and TNBC CSC state, activates a novel pathway involving JUN/AP-1 and ARID1A/BAF that regulates chromatin accessibility of stemness-associated gene enhancers.


Assuntos
Montagem e Desmontagem da Cromatina , Regulação Neoplásica da Expressão Gênica , Carcinogênese/genética , Cromatina/genética , Cromatina/metabolismo , Humanos , Masculino , Mucina-1/metabolismo , Células-Tronco Neoplásicas/metabolismo , Oncogenes
19.
Int J Oncol ; 60(2)2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34981812

RESUMO

miR­1291 exerts an anti­tumor effect in a subset of human carcinomas, including pancreatic cancer. However, its role in colorectal cancer (CRC) is largely unknown. In the present study, the expression and effect of miR­1291 in CRC cells was investigated. It was identified that miR­1291 significantly suppressed the proliferation, invasion, cell mobility and colony formation of CRC cells. Additionally, miR­1291 induced cell apoptosis. A luciferase reporter assay revealed that miR­1291 directly bound the 3'­untranslated region sequence of doublecortin­like kinase 1 (DCLK1). miR­1291 also suppressed DCLK1 mRNA and protein expression in HCT116 cells that expressed DCLK1. Furthermore, miR­1291 suppressed cancer stem cell markers BMI1 and CD133, and inhibited sphere formation. The inhibitory effects on sphere formation, invasion and mobility in HCT116 cells were also explored and verified using DCLK1 siRNAs. Furthermore, miR­1291 induced CDK inhibitors p21WAF1/CIP1 and p27KIP1 in three CRC cell lines, and the overexpression of DCLK1 in HCT116 cells led to a decrease of p21WAF1/CIP1 and p27KIP1. Intravenous administration of miR­1291 loaded on the super carbonate apatite delivery system significantly inhibited tumor growth in the DLD­1 xenograft mouse model. Additionally, the resultant tumors exhibited significant upregulation of the p21WAF1/CIP1 and p27KIP1 protein with treatment of miR­1291. Taken together, the results indicated that miR­1291 served an anti­tumor effect by modulating multiple functions, including cancer stemness and cell cycle regulation. The current data suggested that miR­1291 may be a promising nucleic acid medicine against CRC.


Assuntos
Linhagem Celular/metabolismo , Neoplasias do Colo/tratamento farmacológico , MicroRNAs/farmacologia , Linhagem Celular/imunologia , Neoplasias do Colo/fisiopatologia , Quinases Semelhantes a Duplacortina/efeitos dos fármacos , Quinases Semelhantes a Duplacortina/metabolismo , Humanos , MicroRNAs/administração & dosagem
20.
Carcinogenesis ; 43(1): 67-76, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-34657147

RESUMO

Pancreatic ductal adenocarcinomas (PDAC) and poorly differentiated pancreatic neuroendocrine (NE) carcinomas are KRAS mutant malignancies with a potential common cell of origin. PDAC ductal, but not NE, lineage traits have been associated with cell-intrinsic activation of interferon (IFN) pathways. The present studies demonstrate that the MUC1 C-terminal subunit (MUC1-C), which evolved to protect mammalian epithelia from loss of homeostasis, is aberrantly overexpressed in KRAS mutant PDAC tumors and cell lines. We show that MUC1-C is necessary for activation of the type I and II IFN pathways and for expression of the Yamanaka OCT4, SOX2, KLF4 and MYC (OSKM) pluripotency factors. Our results demonstrate that MUC1-C integrates IFN signaling and pluripotency with NE dedifferentiation by forming a complex with MYC and driving the (i) achaete-scute homolog 1 and BRN2/POU3F2 neural, and (ii) NOTCH1/2 stemness transcription factors. Of translational relevance, targeting MUC1-C genetically and pharmacologically in PDAC cells (i) suppresses OSKM, NE dedifferentiation and NOTCH1/2, and (ii) inhibits self-renewal capacity and tumorigenicity. In PDAC tumors, we show that MUC1 significantly associates with activation of IFN signaling, MYC and NOTCH, and that upregulation of the MUC1-C → MYC pathway confers a poor prognosis. These findings indicate that MUC1-C dictates PDAC NE lineage specification and is a potential target for the treatment of recalcitrant pancreatic carcinomas with NE dedifferentiation.


Assuntos
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Mucina-1/genética , Células Neuroendócrinas/patologia , Neoplasias Pancreáticas/genética , Adenocarcinoma/patologia , Animais , Carcinogênese/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos Nus , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/patologia , Transdução de Sinais/genética , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA