Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Diabetes Investig ; 15(6): 736-742, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38421109

RESUMO

AIMS/INTRODUCTION: This study aimed to investigate the diagnostic potential of two simplified tests, a point-of-care nerve conduction device (DPNCheck™) and a coefficient of variation of R-R intervals (CVR-R), as an alternative to traditional nerve conduction studies for the diagnosis of diabetic polyneuropathy (DPN) in patients with diabetes. MATERIALS AND METHODS: Inpatients with type 1 or type 2 diabetes (n = 167) were enrolled. The study population consisted of 101 men, with a mean age of 60.8 ± 14.8 years. DPN severity was assessed using traditional nerve conduction studies, and differentiated based on Baba's classification (BC). To examine the explanatory potential of variables in DPNCheck™ and CVR-R regarding the severity of DPN according to BC, a multiple regression analysis was carried out, followed by a receiver operating characteristic analysis. RESULTS: Based on BC, 61 participants (36.5% of the total) were categorized as having DPN severity of stage 2 or more. The multiple regression analysis yielded a predictive formula with high predictive power for DPN diagnosis (estimated severity of DPN in BC = 2.258 - 0.026 × nerve conduction velocity [m/s] - 0.594 × ln[sensory nerve action potential amplitude (µV)] + 0.528In[age(years)] - 0.178 × ln[CVR-R], r = 0.657). The area under the curve in receiver operating characteristic analysis was 0.880. Using the optimal cutoff value for DPN with severer than stage 2, the predictive formula showed good diagnostic efficacy: sensitivity of 83.6%, specificity of 79.2%, positive predictive value of 51.7% and negative predictive value of 76.1%. CONCLUSIONS: These findings suggest that DPN diagnosis using DPNCheck™ and CVR-R could improve diagnostic efficiency and accessibility for DPN assessment in patients with diabetes.


Assuntos
Neuropatias Diabéticas , Eletrocardiografia , Condução Nervosa , Sistemas Automatizados de Assistência Junto ao Leito , Humanos , Neuropatias Diabéticas/diagnóstico , Masculino , Pessoa de Meia-Idade , Condução Nervosa/fisiologia , Eletrocardiografia/instrumentação , Eletrocardiografia/métodos , Idoso , Feminino , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico
2.
Diabetol Int ; 14(1): 76-85, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36636163

RESUMO

Aims: Muscle atrophy is a diabetic complication, which results in a deterioration in glycemic control in type 2 diabetes mellitus (T2DM) individuals. The psoas muscle mass index (PMI) is a reliable indicator for estimating whole-body muscle mass. We aimed to examine the relationship between clinical parameters and the PMI to clarify the mechanism underlying muscle atrophy in diabetes. Methods: This retrospective, cross-sectional study examined 51 patients (31 men and 20 women) with T2DM and a mean HbA1c value of 9.9 ± 1.7%. These patients were admitted to Aichi Medical University Hospital and underwent abdominal computed tomography imaging from July 2020 to April 2021. Multiple clinical parameters were assessed with the PMI. Results: In a multiple regression analysis adjusted for age and sex, the PMI was correlated with body weight, body mass index, serum concentrations of corrected calcium, aspartate aminotransferase, alanine aminotransferase, creatine kinase, thyroid-stimulating hormone (TSH), urinary C-peptide concentrations, the free triiodothyronine/free thyroxine (FT3/FT4) ratio, and the young adult mean score at the femur neck. Receiver operating characteristic curves were created using TSH concentrations and the FT3/FT4 ratio for diagnosing a low PMI. The area under the curve was 0.593 and 0.699, respectively. The cut-off value with maximum accuracy for TSH concentrations was 1.491 µIU/mL, sensitivity was 56.1%, and specificity was 80.0%. Corresponding values for the FT3/FT4 ratio were 1.723, 78.0, and 66.7%, respectively. Conclusion: TSH concentrations and the FT3/FT4 ratio are correlated with the PMI, and their thresholds may help prevent muscle mass loss in Japanese individuals with T2DM.

3.
Int J Mol Sci ; 23(21)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36362390

RESUMO

The primary functional units of the thyroid gland are follicles of various sizes comprised of a monolayer of epithelial cells (thyrocytes) surrounding an apical extracellular cavity known as the follicle lumen. In the normal thyroid gland, the follicle lumen is filled with secreted protein (referred to as colloid), comprised nearly exclusively of thyroglobulin with a half-life ranging from days to weeks. At the cellular boundary of the follicle lumen, secreted thyroglobulin becomes iodinated, resulting from the coordinated activities of enzymes localized to the thyrocyte apical plasma membrane. Thyroglobulin appearance in evolution is essentially synchronous with the appearance of the follicular architecture of the vertebrate thyroid gland. Thyroglobulin is the most highly expressed thyroid gene and represents the most abundantly expressed thyroid protein. Wildtype thyroglobulin protein is a large and complex glycoprotein that folds in the endoplasmic reticulum, leading to homodimerization and export via the classical secretory pathway to the follicle lumen. However, of the hundreds of human thyroglobulin genetic variants, most exhibit increased susceptibility to misfolding with defective export from the endoplasmic reticulum, triggering hypothyroidism as well as thyroidal endoplasmic reticulum stress. The human disease of hypothyroidism with defective thyroglobulin (either homozygous, or compound heterozygous) can be experimentally modeled in thyrocyte cell culture, or in whole animals, such as mice that are readily amenable to genetic manipulation. From a combination of approaches, it can be demonstrated that in the setting of thyroglobulin misfolding, thyrocytes under chronic continuous ER stress exhibit increased susceptibility to cell death, with interesting cell biological and pathophysiological consequences.


Assuntos
Hipotireoidismo , Células Epiteliais da Tireoide , Camundongos , Humanos , Animais , Tireoglobulina/metabolismo , Hipotireoidismo/metabolismo , Células Epiteliais da Tireoide/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas/metabolismo
4.
STAR Protoc ; 3(3): 101591, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35942346

RESUMO

Morphological analysis of peripheral nerves in mouse models can be used to characterize the pathophysiology of peripheral nerve disease, but obtaining high-quality electron micrographs can be challenging. Here, we present a protocol to obtain electron micrographs of mouse peripheral nerves. We detail the procedures of sampling, fixation, and embedding of peripheral nerves. We then outline the steps for ultrathin sectioning and transmission electron microscopy imaging. Finally, we describe morphological evaluation of nerve fibers in these images using ImageJ and AxonSeg. For complete details on the use and execution of this protocol, please refer to Nakai-Shimoda et al. (2021).


Assuntos
Técnicas Histológicas , Nervos Periféricos , Animais , Técnicas Histológicas/métodos , Camundongos , Microscopia Eletrônica de Transmissão , Nervos Periféricos/diagnóstico por imagem , Manejo de Espécimes
5.
Sci Rep ; 12(1): 9724, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35697861

RESUMO

Diabetic peripheral neuropathy (DPN) includes symptoms of thermosensory impairment, which are reported to involve changes in the expression or function, or both, of nociceptive TRPV1 and TRPA1 channels in rodents. In the present study, we did not find changes in the expression or function of TRPV1 or TRPA1 in DPN mice caused by STZ, although thermal hypoalgesia was observed in a murine model of DPN or TRPV1-/- mice with a Plantar test, which specifically detects temperature avoidance. With a Thermal Gradient Ring in which mice can move freely in a temperature gradient, temperature preference can be analyzed, and we clearly discriminated the temperature-dependent phenotype between DPN and TRPV1-/- mice. Accordingly, we propose approaches with multiple behavioral methods to analyze the progression of DPN by response to thermal stimuli. Attention to both thermal avoidance and preference may provide insight into the symptoms of DPN.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Animais , Camundongos , Neuropatias Diabéticas/etiologia
6.
iScience ; 25(1): 103609, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35005553

RESUMO

Glucose-responsive ATP-sensitive potassium channels (KATP) are expressed in a variety of tissues including nervous systems. The depolarization of the membrane potential induced by glucose may lead to hyperexcitability of neurons and induce excitotoxicity. However, the roles of KATP in the peripheral nervous system (PNS) are poorly understood. Here, we determine the roles of KATP in the PNS using KATP-deficient (Kir6.2-deficient) mice. We demonstrate that neurite outgrowth of dorsal root ganglion (DRG) neurons was reduced by channel closers sulfonylureas. However, a channel opener diazoxide elongated the neurite. KATP subunits were expressed in mouse DRG, and expression of certain subunits including Kir6.2 was increased in diabetic mice. In Kir6.2-deficient mice, the current perception threshold, thermal perception threshold, and sensory nerve conduction velocity were impaired. Electron microscopy revealed a reduction of unmyelinated and small myelinated fibers in the sural nerves. In conclusion, KATP may contribute to the development of peripheral neuropathy.

7.
JCI Insight ; 6(11)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33914707

RESUMO

Complete absence of thyroid hormone is incompatible with life in vertebrates. Thyroxine is synthesized within thyroid follicles upon iodination of thyroglobulin conveyed from the endoplasmic reticulum (ER), via the Golgi complex, to the extracellular follicular lumen. In congenital hypothyroidism from biallelic thyroglobulin mutation, thyroglobulin is misfolded and cannot advance from the ER, eliminating its secretion and triggering ER stress. Nevertheless, untreated patients somehow continue to synthesize sufficient thyroxine to yield measurable serum levels that sustain life. Here, we demonstrate that TGW2346R/W2346R humans, TGcog/cog mice, and TGrdw/rdw rats exhibited no detectable ER export of thyroglobulin, accompanied by severe thyroidal ER stress and thyroid cell death. Nevertheless, thyroxine was synthesized, and brief treatment of TGrdw/rdw rats with antithyroid drug was lethal to the animals. When untreated, remarkably, thyroxine was synthesized on the mutant thyroglobulin protein, delivered via dead thyrocytes that decompose within the follicle lumen, where they were iodinated and cannibalized by surrounding live thyrocytes. As the animals continued to grow goiters, circulating thyroxine increased. However, when TGrdw/rdw rats age, they cannot sustain goiter growth that provided the dying cells needed for ongoing thyroxine synthesis, resulting in profound hypothyroidism. These results establish a disease mechanism wherein dead thyrocytes support organismal survival.


Assuntos
Morte Celular , Hipotireoidismo Congênito/metabolismo , Estresse do Retículo Endoplasmático/genética , Tireoglobulina/metabolismo , Células Epiteliais da Tireoide/metabolismo , Glândula Tireoide/metabolismo , Tiroxina/biossíntese , Animais , Hipotireoidismo Congênito/genética , Hipotireoidismo Congênito/patologia , Retículo Endoplasmático/metabolismo , Bócio/congênito , Humanos , Camundongos , Mutação de Sentido Incorreto , Ratos , Tireoglobulina/genética , Células Epiteliais da Tireoide/patologia , Glândula Tireoide/patologia
8.
Biomolecules ; 11(2)2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33672050

RESUMO

Although diabetic polyneuropathy (DPN) is a frequent diabetic complication, no effective therapeutic approach has been established. Glucagon is a crucial hormone for glucose homeostasis but has pleiotropic effects, including neuroprotective effects in the central nervous system. However, the importance of glucagon in the peripheral nervous system (PNS) has not been clarified. Here, we hypothesized that glucagon might have a neuroprotective function in the PNS. The immortalized rat dorsal root ganglion (DRG) neuronal cell line 50B11 was treated with methylglyoxal (MG) to mimic an in vitro DPN model. The cells were cultured with or without glucagon or MG. Neurotoxicity, survival, apoptosis, neurite projection, cyclic adenosine monophosphate (cAMP), and protein kinase A (PKA) were examined. Glucagon had no cytotoxicity and rescued the cells from neurotoxicity. Cell survival was increased by glucagon. The ratio of apoptotic cells, which was increased by MG, was reduced by glucagon. Neurite outgrowth was accelerated in glucagon-treated cells. Cyclic AMP and PKA accumulated in the cells after glucagon stimulation. In conclusion, glucagon protected the DRG neuronal cells from MG-induced cellular stress. The cAMP/PKA pathway may have significant roles in those protective effects of glucagon. Glucagon may be a potential target for the treatment of DPN.


Assuntos
Neuropatias Diabéticas/metabolismo , Glucagon/química , Neurônios/metabolismo , Sistema Nervoso Periférico/metabolismo , Aldeído Pirúvico/química , Animais , Apoptose , Linhagem Celular , Sobrevivência Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Gânglios Espinais/metabolismo , Glucagon/metabolismo , Mitocôndrias/metabolismo , Neuritos/metabolismo , Ratos , Espécies Reativas de Oxigênio
9.
JCI Insight ; 6(7)2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33661766

RESUMO

Secretory protein misfolding has been linked to ER stress and cell death. We expressed a TGrdw transgene encoding TG-G(2298)R, a misfolded mutant thyroglobulin reported to be linked to thyroid cell death. When the TGrdw transgene was expressed at low level in thyrocytes of TGcog/cog mice that experienced severe ER stress, we observed increased thyrocyte cell death and increased expression of CIDE-A (cell death-inducing DFFA-like effector-A, a protein of lipid droplets) in whole thyroid gland. Here we demonstrate that acute ER stress in cultured PCCL3 thyrocytes increases Cidea mRNA levels, maintained at least in part by increased mRNA stability, while being negatively regulated by activating transcription factor 6 - with similar observations that ER stress increases Cidea mRNA levels in other cell types. CIDE-A protein is sensitive to proteasomal degradation yet is stabilized by ER stress, and elevated expression levels accompany increased cell death. Unlike acute ER stress, PCCL3 cells adapted and surviving chronic ER stress maintained a disproportionately lower relative mRNA level of Cidea compared with that of other, classical ER stress markers, as well as a blunted Cidea mRNA response to a new, unrelated acute ER stress challenge. We suggest that CIDE-A is a novel marker linked to a noncanonical ER stress response program, with implications for cell death and survival.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Glândula Tireoide/fisiologia , Animais , Proteínas Reguladoras de Apoptose/genética , Biomarcadores , Morte Celular/fisiologia , Linhagem Celular , Sobrevivência Celular/fisiologia , Doxiciclina/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ratos , Tireoglobulina/genética , Glândula Tireoide/citologia , Tunicamicina/farmacologia
10.
J Diabetes Investig ; 12(4): 583-591, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32799422

RESUMO

AIMS/INTRODUCTION: A gold standard in the diagnosis of diabetic polyneuropathy (DPN) is a nerve conduction study. However, as a nerve conduction study requires expensive equipment and well-trained technicians, it is largely avoided when diagnosing DPN in clinical settings. Here, we validated a novel diagnostic method for DPN using a point-of-care nerve conduction device as an alternative way of diagnosis using a standard electromyography system. MATERIALS AND METHODS: We used a multiple regression analysis to examine associations of nerve conduction parameters obtained from the device, DPNCheck™, with the severity of DPN categorized by the Baba classification among 375 participants with type 2 diabetes. A nerve conduction study using a conventional electromyography system was implemented to differentiate the severity in the Baba classification. The diagnostic properties of the device were evaluated using a receiver operating characteristic curve. RESULTS: A multiple regression model to predict the severity of DPN was generated using sural nerve conduction data obtained from the device as follows: the severity of DPN = 2.046 + 0.509 × ln(age [years]) - 0.033 × (nerve conduction velocity [m/s]) - 0.622 × ln(amplitude of sensory nerve action potential [µV]), r = 0.649. Using a cut-off value of 1.3065 in the model, moderate-to-severe DPN was effectively diagnosed (area under the receiver operating characteristic curve 0.871, sensitivity 70.1%, specificity 87.7%, positive predictive value 83.0%, negative predictive value 77.3%, positive likelihood ratio 5.67, negative likelihood ratio 0.34). CONCLUSIONS: Nerve conduction parameters in the sural nerve acquired by the handheld device successfully predict the severity of DPN.


Assuntos
Neuropatias Diabéticas/diagnóstico , Condução Nervosa , Testes Imediatos , Adulto , Idoso , Idoso de 80 Anos ou mais , Eletromiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Índice de Gravidade de Doença
11.
J Diabetes Investig ; 12(7): 1236-1243, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33210835

RESUMO

AIMS/INTRODUCTION: Diabetic polyneuropathy (DPN) develops in the early stage of diabetes. However, no common diagnostic protocol has yet been established. Here, to verify that the flicker electroretinogram using a hand-held device can detect the early dysfunction of the peripheral nervous system in patients with diabetes, we investigated the correlation between the progression of DPN and neuroretinal dysfunction. MATERIALS AND METHODS: In total, 184 participants with type 1 or 2 diabetes underwent a flicker electroretinogram (ERG) using a hand-held device RETeval™ and nerve conduction study. Participants were also evaluated for intima-media thickness, ankle-brachial index, toe brachial index and brachial-ankle pulse wave velocity. Parameters of the nerve conduction study were used to diagnose the severity according to Baba's classification. A multiple regression analysis was used to examine the associations of ERG parameters with the severity of DPN categorized by Baba's classification. Diagnostic properties of the device in DPN were evaluated using a receiver operating characteristic curve. RESULTS: A multiple regression model to predict the severity of DPN was generated using ERG. In the model, moderate-to-severe DPN was effectively diagnosed (area under the receiver operating characteristic curve 0.692, sensitivity 56.5%, specificity 78.3%, positive predictive value 70.6%, negative predictive value 66.1%, positive likelihood ratio 2.60, negative likelihood ratio 0.56). In the patients without diabetic retinopathy, the implicit time and amplitude in ERG significantly correlated with the parameters of the nerve conduction study, brachial-ankle pulse wave velocity and intima-media thickness. CONCLUSIONS: Electroretinogram parameters obtained by the hand-held device successfully predict the severity of DPN. The device might be useful to evaluate DPN.


Assuntos
Aterosclerose/fisiopatologia , Diabetes Mellitus Tipo 1/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Neuropatias Diabéticas/diagnóstico , Retinopatia Diabética/diagnóstico , Eletrorretinografia/instrumentação , Idoso , Índice Tornozelo-Braço , Aterosclerose/complicações , Espessura Intima-Media Carotídea , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 2/complicações , Neuropatias Diabéticas/etiologia , Retinopatia Diabética/etiologia , Eletrorretinografia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Condução Nervosa/fisiologia , Nervos Periféricos/fisiopatologia , Valor Preditivo dos Testes , Análise de Onda de Pulso , Curva ROC , Índice de Gravidade de Doença
12.
J Diabetes Investig ; 12(8): 1430-1441, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33300294

RESUMO

AIMS/INTRODUCTION: Diabetic polyneuropathy (DPN) and diabetic retinopathy (DR) are traditionally regarded as microvascular complications. However, these complications may share similar neurodegenerative pathologies. Here we evaluate the correlations in the severity of DPN and changes in the thickness of neuroretinal layers to elucidate whether these complications exist at similar stages of progression. MATERIALS AND METHODS: A total of 43 patients with type 2 diabetes underwent a nerve conduction study (NCS), a macular optical coherence tomography, and a carotid artery ultrasound scan. Diabetic polyneuropathy was classified according to Baba's classification using NCS. The retina was automatically segmented into four layers; ganglion cell complex (GCC), inner nuclear layer/outer plexiform layer (INL/OPL), outer nuclear layer/photoreceptor inner and outer segments, and retinal pigment epithelium (RPE). The thickness of each retinal layer was separately analyzed for the fovea and the parafovea. RESULTS: Fourteen patients were classified as having moderate to severe diabetic polyneuropathy. The thicknesses of the foveal and parafoveal INL/OPL increased in patients with diabetic polyneuropathy compared with patients without. The thickness of the parafoveal retinal pigment epithelium decreased in patients with diabetic polyneuropathy. The thinning of parafoveal ganglion cell complex and foveal and parafoveal retinal pigment epithelium were positively correlated with deterioration of nerve functions in the nerve conduction study, but the thickening of INL/OPL was positively correlated with the nerve function deterioration. The thinning of parafoveal ganglion cell complex and foveal retinal pigment epithelium were positively correlated with the thickening of the carotid intima-media. CONCLUSIONS: Depending on the progression of diabetic polyneuropathy, the ganglion cell complex and retinal pigment epithelium became thinner and the INL/OPL became thicker. These retinal changes might be noteworthy for pathological investigations and for the assessment of diabetic polyneuropathy and diabetic retinopathy.


Assuntos
Neuropatias Diabéticas/diagnóstico por imagem , Neuropatias Diabéticas/fisiopatologia , Retina/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Idoso , Idoso de 80 Anos ou mais , Artérias Carótidas/diagnóstico por imagem , Espessura Intima-Media Carotídea , Diabetes Mellitus Tipo 2/fisiopatologia , Retinopatia Diabética , Eletrorretinografia , Feminino , Fóvea Central/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Condução Nervosa , Células Ganglionares da Retina/patologia , Segmento Interno das Células Fotorreceptoras da Retina/patologia , Segmento Externo das Células Fotorreceptoras da Retina/patologia , Epitélio Pigmentado da Retina/patologia , Ultrassonografia
13.
Cells ; 9(11)2020 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142678

RESUMO

Diabetes is a major risk factor for atherosclerosis and ischemic vascular diseases. Recently, regenerative medicine is expected to be a novel therapy for ischemic diseases. Our previous studies have reported that transplantation of stem cells promoted therapeutic angiogenesis for diabetic neuropathy and ischemic vascular disease in a paracrine manner, but the precise mechanism is unclear. Therefore, we examined whether secreted factors from stem cells had direct beneficial effects on endothelial cells to promote angiogenesis. The soluble factors were collected as conditioned medium (CM) 48 h after culturing stem cells from human exfoliated deciduous teeth (SHED) in serum-free DMEM. SHED-CM significantly increased cell viability of human umbilical vein endothelial cells (HUVECs) in MTT assays and accelerated HUVECs migration in wound healing and Boyden chamber assays. In a Matrigel plug assay of mice, the migrated number of primary endothelial cells was markedly increased in the plug containing SHED-CM or SHED suspension. SHED-CM induced complex tubular structures of HUVECs in a tube formation assay. Furthermore, SHED-CM significantly increased neovascularization from the primary rat aorta, indicating that SHED-CM stimulated primary endothelial cells to promote comprehensive angiogenesis processes. The angiogenic effects of SHED-CM were the same or greater than the effective concentration of VEGF. In conclusion, SHED-CM directly stimulates vascular endothelial cells to promote angiogenesis and is promising for future clinical application.


Assuntos
Indutores da Angiogênese/metabolismo , Meios de Cultivo Condicionados/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células-Tronco/metabolismo , Dente Decíduo/citologia , Animais , Movimento Celular/efeitos dos fármacos , Separação Celular/métodos , Células Cultivadas , Criança , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Esfoliação de Dente
14.
Biochem Biophys Res Commun ; 532(1): 47-53, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-32826056

RESUMO

Although diabetic polyneuropathy (DPN) is the commonest diabetic complication, its pathology remains to be clarified. As previous papers have suggested the neuroprotective effects of glucagon-like peptide-1 in DPN, the current study investigated the physiological indispensability of glucagon gene-derived peptides (GCGDPs) including glucagon-like peptide-1 in the peripheral nervous system (PNS). Neurological functions and neuropathological changes of GCGDP deficient (gcg-/-) mice were examined. The gcg-/- mice showed tactile allodynia and thermal hyperalgesia at 12-18 weeks old, followed by tactile and thermal hypoalgesia at 36 weeks old. Nerve conduction studies revealed a decrease in sensory nerve conduction velocity at 36 weeks old. Pathological findings showed a decrease in intraepidermal nerve fiber densities. Electron microscopy revealed a decrease in circularity and an increase in g-ratio of myelinated fibers and a decrease of unmyelinated fibers in the sural nerves of the gcg-/- mice. Effects of glucagon on neurite outgrowth were examined using an ex vivo culture of dorsal root ganglia. A supraphysiological concentration of glucagon promoted neurite outgrowth. In conclusion, the mice with deficiency of GCGDPs developed peripheral neuropathy with age. Furthermore, glucagon might have neuroprotective effects on the PNS of mice. GCGDPs might be involved in the pathology of DPN.


Assuntos
Neuropatias Diabéticas/etiologia , Peptídeos Semelhantes ao Glucagon/deficiência , Animais , Neuropatias Diabéticas/genética , Neuropatias Diabéticas/patologia , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Glucagon/deficiência , Glucagon/genética , Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/deficiência , Peptídeo 1 Semelhante ao Glucagon/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeos Semelhantes ao Glucagon/genética , Peptídeos Semelhantes ao Glucagon/metabolismo , Hiperalgesia/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibras Nervosas Mielinizadas/patologia , Condução Nervosa , Crescimento Neuronal , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Glucagon/genética , Receptores de Glucagon/metabolismo
15.
J Biol Chem ; 295(20): 6876-6887, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32241916

RESUMO

The large secretory glycoprotein thyroglobulin is the primary translation product of thyroid follicular cells. This difficult-to-fold protein is susceptible to structural alterations that disable export of the misfolded thyroglobulin from the endoplasmic reticulum (ER), which is a known cause of congenital hypothyroidism characterized by severe chronic thyrocyte ER stress. Nevertheless, individuals with this disease commonly grow a goiter, indicating thyroid cell survival and adaptation. To model these processes, here we continuously exposed rat PCCL3 thyrocytes to tunicamycin, which causes a significant degree of ER stress that is specifically attributable to thyroglobulin misfolding. We found that, in response, PCCL3 cells down-regulate expression of the "tunicamycin transporter" (major facilitator superfamily domain containing-2A, Mfsd2a). Following CRISPR/Cas9-mediated Mfsd2a deletion, PCCL3 cells could no longer escape the chronic effects of high-dose tunicamycin, as demonstrated by persistent accumulation of unglycosylated thyroglobulin; nevertheless, these thyrocytes survived and grew. A proteomic analysis of these cells adapted to chronic ER protein misfolding revealed many hundreds of up-regulated proteins, indicating stimulation of ER chaperones, oxidoreductases, stress responses, and lipid biosynthesis pathways. Further, we noted increased phospho-AMP-kinase, suggesting up-regulated AMP-kinase activity, and decreased phospho-S6-kinase and protein translation, suggesting decreased mTOR activity. These changes are consistent with conserved cell survival/adaptation pathways. We also observed a less-differentiated thyrocyte phenotype with decreased PAX8, FOXE1, and TPO protein levels, along with decreased thyroglobulin mRNA levels. In summary, we have developed a model of thyrocyte survival and growth during chronic continuous ER stress that recapitulates features of congenital hypothyroid goiter caused by mutant thyroglobulin.


Assuntos
Estresse do Retículo Endoplasmático , Dobramento de Proteína , Tireoglobulina/metabolismo , Células Epiteliais da Tireoide/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Sobrevivência Celular , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Camundongos , Camundongos Transgênicos , Fator de Transcrição PAX8/genética , Fator de Transcrição PAX8/metabolismo , Simportadores/genética , Simportadores/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Tireoglobulina/genética
16.
PLoS One ; 15(1): e0228004, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31990936

RESUMO

Type 2 diabetes and dyslipidemia are diseases that collectively increase the risk of patients developing cardiovascular complications. Several incretin-based drugs are reported to improve lipid metabolism, and one of these medications, anagliptin, is a dipeptidyl peptidase-4 (DPP-4) inhibitor that has been shown to decrease serum triglyceride and low-density lipoproteins cholesterol. This study aimed to conduct an investigation into the effects of anagliptin on serum lipid profiles. This multicenter, open-label, randomized (1:1), parallel group study was designed to evaluate the effects of anagliptin on serum lipid profiles (triglycerides, lipoproteins, apolipoproteins, and cholesterol fractions). The study involved 24 patients with type 2 diabetes at two participating hospitals for a period of 24 weeks. Patients were randomly assigned to the anagliptin (n = 12) or control (n = 12) groups. Patients in the anagliptin group were treated with 200 mg of the drug twice daily. Patients in the control group did not receive anagliptin, but continued with their previous treatment schedules. Lipid metabolism was examined under fasting conditions at baseline and 24 weeks. Patients treated with anagliptin for 24 weeks exhibited significantly reduced levels of serum apolipoprotein B-48, a marker for lipid transport from the intestine, compared with the control group patients (P < 0.05). After 24 weeks of treatment, serum adiponectin levels were significantly raised, whereas glycated hemoglobin (HbA1c) levels were significantly lower compared with the baseline in the anagliptin group (P < 0.05), but not in the control group. This study showed that the DPP-4 inhibitor anagliptin reduces fasting apolipoprotein B-48 levels, suggesting that this drug may have beneficial effects on lipid metabolism possibly mediated by the inhibition of intestinal lipid transport.


Assuntos
Apolipoproteína B-48/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Dislipidemias/tratamento farmacológico , Hipolipemiantes/uso terapêutico , Metabolismo dos Lipídeos/efeitos dos fármacos , Pirimidinas/uso terapêutico , Adiponectina/sangue , Idoso , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Diabetes Mellitus Tipo 2/sangue , Dislipidemias/sangue , Jejum/sangue , Feminino , Hemoglobinas Glicadas/metabolismo , Humanos , Lipoproteínas/sangue , Masculino , Pessoa de Meia-Idade , Triglicerídeos/sangue
17.
Mol Cell Endocrinol ; 499: 110613, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31605742

RESUMO

Most peptide hormones originate from secretory protein precursors synthesized within the endoplasmic reticulum (ER). In this specialized organelle, the newly-made prohormones must fold to their native state. Completion of prohormone folding usually occurs prior to migration through the secretory pathway, as unfolded/misfolded prohormones are retained by mechanisms collectively known as ER quality control. Not only do most monomeric prohormones need to fold properly, but many also dimerize or oligomerize within the ER. If oligomerization occurs before completion of monomer folding then when a poorly folded peptide prohormone is retained by quality control mechanisms, it may confer ER retention upon its oligomerization partners. Conversely, oligomerization between well-folded and improperly folded partners might help to override ER quality control, resulting in rescue of misfolded forms. Both scenarios appear to be possible in different animal models of endocrine disorders caused by genetic defects of protein folding in the secretory pathway. In this paper, we briefly review three such conditions, including familial neurohypophyseal diabetes insipidus, insulin-deficient diabetes mellitus, and hypothyroidism with defective thyroglobulin.


Assuntos
Doenças do Sistema Endócrino/metabolismo , Hormônios Peptídicos/química , Via Secretória , Animais , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Humanos , Hormônios Peptídicos/metabolismo , Dobramento de Proteína , Multimerização Proteica
18.
J Diabetes Res ; 2019: 2756020, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31828158

RESUMO

Distal sensory-motor polyneuropathy is one of the most frequent diabetic complications. However, few therapies address the etiology of neurodegeneration in the peripheral nervous systems of diabetic patients. Several metabolic mechanisms have been proposed as etiologies of this polyneuropathy. In this study, we revisited one of those mechanisms, the polyol pathway, and investigated the curative effects of a novel strong aldose reductase inhibitor, ranirestat, in streptozotocin-induced diabetic rats with preexisting polyneuropathy. Twelve weeks after the onset of diabetes, rats which had an established polyneuropathy were treated once daily with a placebo, ranirestat, or epalrestat, over 6 weeks. Before and after the treatment, nerve conduction velocities and thermal perception threshold of hindlimbs were examined. After the treatment, intraepidermal fiber density was evaluated. As an ex vivo assay, murine dorsal root ganglion cells were dispersed and cultured with or without 1 µmol/l ranirestat for 48 hours. After the culture, neurite outgrowth was quantified using immunological staining. Sensory nerve conduction velocity increased in diabetic rats treated with ranirestat (43.3 ± 3.6 m/s) compared with rats treated with placebo (39.8 ± 2.3). Motor nerve conduction velocity also increased in the ranirestat group (45.6 ± 3.9) compared with the placebo group (38.9 ± 3.5). The foot withdrawal latency to noxious heating was improved in the ranirestat group (17.7 ± 0.6 seconds) compared with the placebo group (20.6 ± 0.6). The decrease in the intraepidermal fiber density was significant in the diabetic placebo group (21.6 ± 1.7/mm) but not significant in the diabetic ranirestat group (26.2 ± 1.2) compared with the nondiabetic placebo group (30.3 ± 1.5). Neurite outgrowth was promoted in the neurons supplemented with ranirestat (control 1446 ± 147 µm/neuron, ranirestat 2175 ± 149). Ranirestat improved the peripheral nervous dysfunctions in rats with advanced diabetic polyneuropathy. Ranirestat could have potential for regeneration in the peripheral nervous system of diabetic rats.


Assuntos
Diabetes Mellitus Experimental/complicações , Neuropatias Diabéticas/fisiopatologia , Inibidores Enzimáticos/farmacologia , Fibras Nervosas/efeitos dos fármacos , Condução Nervosa/efeitos dos fármacos , Pirazinas/farmacologia , Compostos de Espiro/farmacologia , Sensação Térmica/efeitos dos fármacos , Aldeído Redutase/antagonistas & inibidores , Animais , Neuropatias Diabéticas/etiologia , Epiderme/patologia , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Técnicas In Vitro , Camundongos , Fibras Nervosas/patologia , Condução Nervosa/fisiologia , Crescimento Neuronal/efeitos dos fármacos , Crescimento Neuronal/fisiologia , Ratos , Ratos Wistar , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/fisiologia , Sensação Térmica/fisiologia
19.
Neurosci Lett ; 682: 50-55, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-29886132

RESUMO

Familial neurohypophysial diabetes insipidus (FNDI), characterized by progressive polyuria and loss of arginine vasopressin (AVP) neurons, is an autosomal dominant disorder caused by AVP gene mutations. Our previous studies with FNDI model mice demonstrated that mutant proteins accumulated in the endoplasmic reticulum (ER) of AVP neurons. Here, we examined therapeutic effects of the chemical chaperone 4-phenylbutylate (4-PBA) in FNDI mice. Treatment with 4-PBA reduced mutant protein accumulation in the ER of FNDI mice and increased AVP release, leading to reduced urine volumes. Furthermore, AVP neuron loss under salt loading was attenuated by 4-PBA treatment. These data suggest that 4-PBA ameliorated mutant protein accumulation in the ER of AVP neurons and thereby prevented FNDI phenotype progression.


Assuntos
Arginina Vasopressina/metabolismo , Butilaminas/uso terapêutico , Diabetes Insípido Neurogênico/metabolismo , Retículo Endoplasmático/metabolismo , Mutação/fisiologia , Neurônios/metabolismo , Animais , Arginina Vasopressina/genética , Butilaminas/farmacologia , Diabetes Insípido Neurogênico/tratamento farmacológico , Diabetes Insípido Neurogênico/genética , Modelos Animais de Doenças , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação/efeitos dos fármacos , Neurônios/efeitos dos fármacos
20.
J Endocr Soc ; 2(3): 241-251, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29600292

RESUMO

CONTEXT: Immune checkpoint inhibitors, including anti-programmed cell death-1 (PD-1) antibodies, have become promising treatments for a variety of advanced malignancies. However, these medicines can cause immune-related adverse events (irAEs), including endocrinopathies. OBJECTIVE: This study examined the incidence of endocrine irAEs induced by nivolumab. PATIENTS AND MAIN OUTCOME MEASURED: Sixty-six patients treated with nivolumab at Nagoya University Hospital were prospectively evaluated for pituitary hormones, thyroid function, antithyroid antibodies (Abs), and glucose levels every 6 weeks after the initiation of nivolumab for 24 weeks. RESULTS: Four out of 66 patients developed destructive thyroiditis, and three patients developed hypothyroidism requiring levothyroxine replacement. The prevalence of positive anti-thyroglobulin Abs (TgAbs) and/or anti-thyroid peroxidase Abs (TPOAbs) at baseline was significantly higher in the group that developed destructive thyroiditis (3/4) compared with the group that did not develop thyroiditis (3/62; P = 0.002). There were no significant differences in other clinical variables between the groups. There were no endocrine irAEs other than destructive thyroiditis during the 24 weeks. The prevalence of TgAbs and/or TPOAbs at baseline was not associated with the development of other irAEs, including pneumonitis, colitis, or skin reactions. CONCLUSIONS: Our real-world data showed that destructive thyroiditis was an endocrine irAE that was frequently induced by nivolumab and was significantly associated with positive TgAbs and/or TPOAbs before treatment. Our findings indicate that evaluating these Abs before treatment may help identify patients with a high risk of thyroidal irAEs and may have important clinical benefit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA