Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genes Genet Syst ; 96(1): 41-53, 2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-33731512

RESUMO

It is vital to measure the levels of genetic diversity and differentiation between populations in a species to understand the current genetic structure and evolution of the species. Here, MIG-seq (multiplexed inter-simple sequence repeat genotyping by sequencing) was employed to assess the genetic variation in two tropical leguminous tree species, Dalbergia cochinchinensis and D. nigrescens, in Cambodia and Thailand. Sequence data for 255-618 loci, each with an approximate length of 100 bp, were obtained, and the nucleotide diversity, Tajima's D and FST were computed. The estimates calculated from the data obtained by MIG-seq were compared to those obtained by Sanger sequencing of nine nuclear coding genes in D. cochinchinensis in our previous study. The nucleotide diversity at the MIG-seq loci was slightly higher than that at silent sites in the coding loci, whereas the FST values at the MIG-seq loci were generally lower than those at the coding loci, although the differences were not significant. Moreover, nucleotide diversities within populations of the two species were similar to each other, at approximately 0.005. Three and four population clusters were genetically recognized in D. cochinchinensis and D. nigrescens, respectively. Although the populations were differentiated from each other, the levels of differentiation among them, as measured by FST, were higher in D. cochinchinensis than in D. nigrescens. This indicates higher levels of gene flow between the populations in the latter species. We recommend using MIG-seq for quick surveys of genetic variation because it is cost-effective and results in smaller variance in the estimates of population genetic parameters.


Assuntos
Dalbergia/genética , Florestas , Polimorfismo Genético , Camboja , Repetições de Microssatélites , Tailândia
2.
PhytoKeys ; 140: 139-157, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194319

RESUMO

A new species of Lauraceae, Cryptocarya kaengkrachanensis M.Z.Zhang, Yahara & Tagane, from Kaeng Krachan National Park, Phetchaburi Province, southwestern Thailand, is described and illustrated. This species is morphologically most similar to C. amygdalina in that its leaves are pinnately veined, leathery, and apparently glabrous (but microscopically hairy) abaxially, twigs are yellowish brown hairy, and fruits are 1.36 to 1.85 times longer than width. However, C. kaengkrachanensis is distinguished from C. amygdalina in having the leaves of ovate and elliptic (vs. oblong-lanceolate) with leaf aspect ratio (length:width) from 1.38 to 2.28 (vs. 2.46-3.43), and ovoid fruits (vs. ellipsoid) with stalk distinctly swollen (vs. not or only slightly swollen). In addition, phylogenetic trees constructed based on internal transcribed spacer sequences (ITS) and genome-wide SNPs using MIG-seq showed that C. kaengkrachanensis is not sister to C. amygdalina and is distinct from all the other Cryptocarya species hitherto recognized in Thailand. Analysis including other species demonstrates that C. floribunda should be a synonym of C. amygdalina, but we recognize C. scortechinii as a distinct species.

3.
Heredity (Edinb) ; 123(3): 371-383, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30809077

RESUMO

The evolution of a species depends on multiple forces, such as demography and natural selection. To understand the trajectory and driving forces of evolution of a target species, it is first necessary to uncover that species' population history, such as past and present population sizes, subdivision and gene flow, by using appropriate genetic markers. Cryptomeria japonica is a long-lived monoecious conifer species that is distributed in Japan. There are two main lines (omote-sugi and ura-sugi), which are distinguished by apparent differences in morphological traits that may have contributed to their local adaptation. The evolution of these morphological traits seems to be related to past climatic changes in East Asia, but no precise estimate is available for the divergence time of these two lines and the subsequent population dynamics in this species. Here, we analyzed the nucleotide variations at 120 nuclear genes in 94 individuals by using amplicon sequencing in combination with high-throughput sequencing technologies. Our analysis indicated that the population on Yakushima Island, the southern distribution limit of C. japonica in Japan, diverged from the other populations 0.85 million years ago (MYA). The divergence time of the other populations on mainland Japan was estimated to be 0.32 MYA suggesting that the divergence of omote-sugi and ura-sugi might have occurred before the last glacial maximum. Although we found modest levels of gene flow between the present populations, the long-term isolation and environmental heterogeneity caused by climatic changes might have contributed to the differentiation of the lines and their local adaptation.


Assuntos
Cryptomeria/genética , Fluxo Gênico , Especiação Genética , Seleção Genética , Adaptação Fisiológica/genética , Cryptomeria/classificação , Variação Genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , História do Século XXI , História Antiga , Japão , Fenótipo , Dinâmica Populacional/história , Característica Quantitativa Herdável
4.
Genetics ; 190(3): 1145-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22209904

RESUMO

We measured linkage disequilibrium in mostly noncoding regions of Cryptomeria japonica, a conifer belonging to Cupressaceae. Linkage disequilibrium was extensive and did not decay even at a distance of 100 kb. The average estimate of the population recombination rate per base pair was 1.55 × 10(-5) and was <1/70 of that in the coding regions. We discuss the impact of low recombination rates in a large part of the genome on association studies.


Assuntos
Cryptomeria/genética , Desequilíbrio de Ligação , Regiões não Traduzidas , Cromossomos Artificiais Bacterianos , Ordem dos Genes , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA